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Preface to the Fourth Edition

This fourth edition has been developed to reflect the changes that have occurred in
techniques for the analysis of digital image data in remote sensing over the past five
years or so. Its focus is on those procedures that seem now to have become part
of the set of tools regularly used to perform thematic mapping. As with previous
revisions, the fundamental material has been preserved in its original form because
of its tutorial value; its style has been revised in places and it has been supplemented
if newer aspects have emerged in the time since the third edition appeared. The theme
of the book remains, however, on the needs of the senior student and practitioner.

The earlier editions have contained extensive material in Chapter 1 on satel-
lite programs and sensor characteristics. Although that material is important in the
context of understanding the application of image analysis procedures, the rapid de-
velopment of quasi- and fully operational programs in the past decade has meant that
expanding the material of Chap. 1, as required, would have distracted from the role
of that chapter to introduce the reader to the nature and properties of digital image
data in remote sensing. Accordingly, all of the material on satellite programs and
sensor specifications has been moved to a new Appendix A. Chapter 1 has then been
completely rewritten as a stand-alone introduction to sensors in general and the data
properties of importance in image analysis.

Many changes have been made throughout the book to meet the increasing em-
phasis on hyperspectral data and its analysis. Although much of that is contained in
Chap. 13, techniques required for hyperspectral data processing are developed in the
context of previous chapters, particularly new material on feature extraction tools
that work well on hyperspectral data sets; they are covered in Chap. 10.

Chapter 10 has been re-named. It was felt that there is too much confusion in the
term Data Fusion to retain it as the title for material that is fundamentally concerned
with thematic mapping from multiple data sources and multiple sensors.

Chapter 8, dealing with supervised classification methods, has been substantially
supplemented. Sections have been incorporated on k nearest neighbour classification,
Markov random fields and support vector classifiers.
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Other modifications relate to the noise adjusted principal components transfor-
mation, the definition of texture, a re-working of the contrast modification material
and the inclusion of several further illustrations and problems.

The authors continue to enjoy the very strong support and understanding of their
families, so important in the undertaking of this work, for which they express and
record their sincere gratitude.

Canberra, Australia, January 2005 John A. Richards
Xiuping Jia



Preface to the Third Edition

In the time since the second edition of this text was produced two significant trends
have been apparent. First, access to image processing technology has continued to
improve significantly with most students and practitioners now having readily avail-
able inexpensive workstations and powerful software for analysing and manipulating
image data.

The second change has been the dramatic increase in the numbers of satellite,
aircraft and sensor programs. Perhaps most significant is the widespread availability
of hyperspectral data and the special challenges presented by that data type for
information extraction.

Accordingly, this third edition has been written to reflect those trends while, at
the same time, preserving the important elements of image processing and analysis
algorithms of significance in remote sensing applications.

The major changes between the previous edition and this are an update of Chap. 1,
and the introduction of a new Chap. 13 dealing with methods for analysing hyper-
spectral data sets.

Chapter 12 has also been significantly altered to provide a focus on the inter-
pretation of data sets that are mixed and could contain, for example, different types
of imagery along with other spatial data types found in a geographic information
system. The previous knowledge-based material has been retained but material orig-
inally covered in Chap. 8 dealing with multi-source data analysis has been combined
with knowledge-based methods to create this chapter on data fusion.

The authors wish to express their appreciation to their colleagues for the assis-
tance they have received in preparing this new edition. In particular David Landgrebe
of Purdue University remains a great supporter and both authors have had the benefit
of working with Dave over the years, including periods spent at Purdue.

The authors are also enormously grateful to their families for their understanding
and support in making the completion of this third edition possible.

Canberra, Australia, August 1998 John A. Richards
Xiuping Jia



Preface to the Second Edition

Possibly the greatest change confronting the practitioner and student of remote sens-
ing in the period since the first edition of this text appeared in 1986 has been the enor-
mous improvement in accessibility to image processing technology. Falling hardware
and software costs, combined with an increase in functionality through the develop-
ment of extremely versatile user interfaces, has meant that even the user unskilled in
computing now has immediate and ready access to powerful and flexible means for
digital image analysis and enhancement. An understanding, at algorithmic level, of
the various methods for image processing has become therefore even more impor-
tant in the past few years to ensure the full capability of digital image processing is
utilised.

This period has also been a busy one in relation to digital data supply. Several
nations have become satellite data gatherers and providers, using both optical and
microwave technology. Practitioners and researchers are now faced, therefore, with
the need to be able to process imagery from several sensors, together with other forms
of spatial data. This has been driven, to an extent, by developments in Geographic
Information Systems (GIS) which, in turn, have led to the appearance of newer image
processing procedures as adjuncts to more traditional approaches.

The additional material incorporated in this edition addresses these changes. First,
Chap. 1 has been significantly revised to reflect developments in satellite and sensor
programs. Removal of information on older systems has been resisted since their
data is part of an important archive which still finds value, particularly for historical
applications.

Chapter 8, dealing with supervised classification methods, has been substantially
increased to allow context classification to be addressed, along with techniques, such
as evidential processing and neural networks, which show promise as viable image
interpretation tools. While the inclusion of these topics has caused the chapter to
become particularly large in comparison to the others, it was felt important not to
separate the material from the more traditional methods. The chapter is now pre-
sented therefore in two parts – the first covers the standard supervised classification
procedures and the second the new topics.
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A departure from the application of classical digital image processing to remote
sensing over the last five years has been the adoption of knowledge-based methods,
where qualitative rather than quantitative reasoning is used to perform interpretations.
This is the subject of a new chapter which seeks to introduce reasoning based on
knowledge as a means for single image interpretation, and as an approach that can
deal successfully with the mixed spatial data types of a GIS.

Besides these changes, the opportunity has been taken to correct typographical
and related errors in the first edition and to bring other material up to date.

As with the first edition, the author wishes to record his appreciation to others
for their support and assistance. Ashwin Srinivasan, now with the Turing Institute in
Glasgow, as a very gifted graduate student, developed much of the material on which
Chap. 12 is based and, during his time as a student, helped the author understand the
mechanisms of knowledge processing. He also kindly read and offered comments
on that chapter. The author’s colleague Don Fraser similarly read and provided com-
ments on the material on neural networks. Philip Swain and David Landgrebe of
Purdue University continue to support the author in many ways: through their feed-
back on the first edition, their interaction on image processing, and Dave’s provision
of MultiSpec, the Macintosh computer version of the LARSYS software package.
Finally, the author again expresses gratitude to his family for their constant support,
without which the energy and enthusiasm needed to complete this edition might not
have been found.

Canberra, Australia, March 1993 John A. Richards
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With the widespread availability of satellite and aircraft remote sensing image data
in digital form, and the ready access most remote sensing practitioners have to com-
puting systems for image interpretation, there is a need to draw together the range of
digital image processing procedures and methodologies commonly used in this field
into a single treatment. It is the intention of this book to provide such a function,
at a level meaningful to the non-specialist digital image analyst, but in sufficient
detail that algorithm limitations, alternative procedures and current trends can be
appreciated. Often the applications specialist in remote sensing wishing to make use
of digital processing procedures has had to depend upon either the mathematically
detailed treatments of image processing found in the electrical engineering and com-
puter science literature, or the sometimes necessarily superficial treatments given in
general texts on remote sensing. This book seeks to redress that situation.

Both image enhancement and classification techniques are covered making the
material relevant in those applications in which photointerpretation is used for infor-
mation extraction and in those wherein information is obtained by classification. It
grew out of a graduate course on digital image processing and analysis techniques
for remote sensing data given annually since 1980 at the University of New South
Wales. If used as a graduate textbook its contents with the exception of Chap. 7 can
be covered substantially in a single semester. Its function as a text is supported by
the provision of exercises at the end of each chapter. Most do not require access to
a computer for solution. Rather they are capable of hand manipulation and are in-
cluded to highlight important issues. In many cases some new material is introduced
by means of these exercises.

Each chapter concludes with a short critical bibliography that points to more
detailed treatments of specific topics and provides, where appropriate, comment on
techniques of marginal interest to the mainstream of the book’s theme.

Chapter 1 is essentially a compendium of data sources commonly encountered in
digital form in remote sensing. It is provided as supporting material for the chapters
that follow, drawing out the particular properties of each data source of importance.
The second chapter deals with radiometric and geometric errors in image data and
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with means for correction. This also contains material on registration of images to
maps and images to each other. Here, as in all techniques chapters, real and modelled
image data examples are given. Chapter 3 establishes the role of computer processing
both for photointerpretation by a human analyst and for machine analysis. This may
be skipped by the remote sensing professional but is an important position chapter
if the book is to be used in teaching.

Chapters 4 and 5 respectively cover the range of radiometric and geometric en-
hancement techniques commonly adopted in practice, while Chap. 6 is addressed to
multispectral transformations of data. This includes the principal components trans-
formation and image arithmetic. Chapter 7 is given over to Fourier transformations.
This material is becoming more important in remote sensing with falling hardware
costs and the ready availability of peripheral array processors. Here the properties
of discrete Fourier analysis are given along with means by which the fast Fourier
transform algorithm can be used on image data.

Chapters 8, 9 and 10 provide a treatment of the tools used in image classification,
commencing with supervised classification methods, moving through commonly
used clustering algorithms for unsupervised classification and concluding with means
for separability analysis. These are drawn together into classification methodologies
in Chap. 11 which also provides a set of case studies.

Even though the treatment provided is intended for the non-specialist image
analyst, it is still necessary that it be cast in the context of some vector and matrix
algebra. Otherwise it would be impracticable. Consequently, an appendix is provided
on essential results on vectors and matrices, and all important points in the text are
illustrated by simple worked examples. These demonstrate how vector operations are
evaluated. Beyond this material it is assumed the reader has a passing knowledge of
basic probability and statistics including an appreciation of the multivariate normal
distribution.

Several other appendices are provided to supplement the main presentation. One
deals with developments in image processing hardware and particularly the archi-
tecture (in block form) of interactive image display sub-systems. This material high-
lights trends towards hardware implementation of image processing and illustrates
how many of the algorithms presented in the book can be executed in near real time.

Owing to common practice, some decisions have had to be taken in relation to
definitions even though they could offend the purist. For example the term “pixel"
strictly refers to a unit of digital image data and not to an area on the ground. The latter
is more properly called an effective ground resolution element. However because the
practice of referring to ground resolution elements as pixels, dimensioned in metres,
is so widespread, the current treatment seeks not to be pedantic but rather follows
common practice for simplicity.A difficulty also arises with respect to the numbering
chosen for the wavebands in the Landsat multispectral scanner. Historically these
have been referred to as bands 4 to 7 for Landsats 1 to 3. From Landsat 4 onwards
they have been renumbered as bands 1 to 4. The convention adopted herein is mixed.
When a particular satellite is evident in the discussion, the respective convention is
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adopted and is clear from the context of that discussion. In other cases the convention
for Landsat 4 has been used as much as possible.

Finally, it is a pleasure to acknowledge the contributions made by others to the
production of this book. The manuscript was typed by Mrs Moo Song and Mrs
Alisa Moen, both of whom undertook the task tirelessly and with great patience
and forbearance. Assistance with computing was given by Leanne Bischof, at all
times cheerfully and accurately. The author’s colleagues and students also played
their part, both through direct discussion and by that process of gradual learning that
occurs over many years of association. Particular thanks are expressed to two people.
The author counts himself fortunate to be a friend and colleague of Professor Philip
Swain of Purdue University, who in his own way, has had quite an impact on the
author’s thinking about digital data analysis, particularly in remote sensing. Also,
the author has had the good fortune to work with Tong Lee, a graduate student with
extraordinary insight and ability, who also has contributed to the material through
his many discussions with the author on the theoretical foundations of digital image
processing.

The support and encouragement the author has received from his family during
the preparation of this work has been immeasurable. It is fitting therefore to conclude
in gratitude to Glenda, Matthew and Jennifer, for their understanding and enthusiasm.

Kensington, Australia, May 1986 John A. Richards
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1
Sources and Characteristics
of Remote Sensing Image Data

1.1
Introduction to Data Sources

1.1.1
Characteristics of Digital Image Data

In remote sensing energy emanating from the earth’s surface is measured using a
sensor mounted on an aircraft or spacecraft platform. That measurement is used to
construct an image of the landscape beneath the platform, as depicted in Fig. 1.1.

The energy can be reflected sunlight so that the image recorded is, in many ways,
similar to the view we would have of the earth’s surface from an aeroplane, although
the wavelengths used in remote sensing are often outside the range of human vision.
As an alternative, the upwelling energy can be from the earth itself acting as a radiator
because of its own temperature. Finally, the energy detected could be scattered from
the earth as the result of some illumination by an artificial energy source such as a
laser or radar carried on the platform.

Each of these will be outlined in more detail in the following; it is important here
to note that the overall system is a complex one involving the scattering or emission
of energy from the earth’s surface, followed by transmission through the atmosphere
to instruments mounted on the remote sensing platform, transmission or carriage of
data back to the earth’s surface after which it is then processed into image products
ready for application by the user. It is really from this point onwards that the material
of this book is concerned, viz. we wish to understand how the data, once available
in image format, can be used to build maps of features on the landscape.

We generally talk about the imagery recorded as image data since it is a primary
data source from which we wish to extract usable information. Our ultimate goal is
to understand the landscape as imaged and this can be a challenging task involving
many of the procedures outlined in this book.

One of the major beneficial characteristics of the image data acquired by sensors
on aircraft or spacecraft platforms is that it is readily available in digital format.
Spatially the data is composed of discrete picture elements, or pixels. Radiometrically
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Fig. 1.1. Signal and data flow in a remote sensing system

(i.e. in brightness) it is quantised into discrete levels. Even data that is not recorded
in digital form initially can be converted into discrete data by the use of digitising
equipment. In the early days of remote sensing there was a significant amount of
analogue data recorded; now most of the data is available directly in digital form.

The great advantage of having data available digitally is that it can be processed
by computer either for machine assisted information extraction or for enhancement
of its visual qualities in order to make it more interpretable by a human analyst.
Generally, the analyst is referred to as a photointerpreter.

Possibly the most significant characteristic of the image data in a remote sensing
system is the wavelength, or range of wavelengths, used in the image acquisition
process. If reflected solar radiation is measured images can, in principle, be recorded
in the ultraviolet, visible and near-to-middle infrared range of wavelengths. Because
of significant atmospheric absorption, ultraviolet measurements are not made. Most
common, so-called optical, remote sensing systems record data from the visible
through to the near and mid infrared range. The energy emitted by the earth itself
(dominant in the so-called thermal infrared wavelength range) can also be resolved
into different wavelengths that help up understand the properties of the earth surface
region being imaged.
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Fig. 1.2. Technical characteristics of digital image data

The visible and infrared range of wavelengths represents only part of the story
in remote sensing. We can also image the earth in the microwave range, typical of
the wavelengths used in mobile phone, television, FM and radar technologies. While
the earth does emit it’s own level of microwave radiation, it is generally too small to
be measured for most remote sensing mapping purposes. Instead, energy is radiated
from a platform onto the earth’s surface. It is by measuring the energy scattered back
to the platform that image data is recorded. Such a system is referred to as active
since the energy source is provided by the platform. By comparison, remote sensing
measurements that depend upon an energy source such as the sun or the earth itself
are called passive.

From a data handling and analysis point of view the properties of image data
of significance are the number and location of the spectral measurements (called
spectral bands or channels) provided by a particular sensor, the spatial resolution as
described by the pixel size, and the radiometric resolution, as illustrated in Fig. 1.2.
The last describes the range and discernible number of discrete brightness values. It is
sometimes also referred to as dynamic range and is related to the signal-to-noise ratio
of the detectors used. Frequently, the radiometric resolution is expressed in terms
of the number of binary digits, or bits, necessary to represent the range of available
brightness values. Thus, data with 8 bit radiometric resolution has 256 levels of
brightness. Appendix C shows the relationship between radiometric resolution and
brightness levels.

Together, the frame size of an image, in equivalent ground kilometres (which is
determined by the size of the recorded image swath), the number of spectral bands,
the radiometric resolution and the spatial resolution expressed in equivalent ground
metres, determine the data volume generated by a particular sensor. That establishes
the amount of data to be processed, at least in principle. Consider for example the
Landsat Enhanced Thematic Mapper+ (ETM+) instrument. It has seven wavebands
with 8 bit radiometric resolution, six of which have 30 m spatial resolution and one of



4 1 Sources and Characteristics of Remote Sensing Image Data

which has a spatial resolution of 60 m (the thermal band, for which the wavelength is
so long that a larger aperture is required to collect sufficient signal energy to maintain
the radiometric resolution). An image frame of 185 km × 185 km therefore contains
9.5 million pixels in the thermal band and 38 million pixels in each of the other six
bands. At 8 bits per pixel a complete seven band image is composed of 1.9 × 109

bits or 1.9 Gbit. Given that one byte is equivalent to 8 bits the data volume would
more commonly be expressed as 238 Mbytes.

Appendix A provides an overview of common remote sensing missions and their
sensors in terms of the data-related properties of importance to this book. That is use-
ful for indicating orders of magnitude and other properties when determining timing
requirements and other figures of merit in assessing image analysis procedures. It
also places the analytical material in context with the data gathering phase of remote
sensing.

It is of value now to examine the spectral dimension in some detail since the choice
of spectral bands for a particular sensor significantly determines the information
that can be extracted from the data for a particular application. When more than
one spectral measurement is recorded per pixel that data is generally referred to as
multispectral.

1.1.2
Spectral Ranges Commonly Used in Remote Sensing

In principle, remote sensing systems could measure energy emanating from the
earth’s surface in any sensible range of wavelengths. However technological consid-
erations, the selective opacity of the earth’s atmosphere, scattering from atmospheric
particulates and the significance of the data provided exclude certain wavelengths.
The major ranges utilized for earth resources sensing are between about 0.4 and
12 µm (the visible/infrared range) and between about 30 to 300 mm (the microwave
range). At microwave wavelengths it is often more common to use frequency rather
than wavelength to describe ranges of importance. Thus the microwave range of 30
to 300 mm corresponds to frequencies between 1 GHz and 10 GHz. For atmospheric
remote sensing, frequencies in the range 20 GHz to 60 GHZ are encountered.

The significance of these different ranges lies in the interaction mechanism be-
tween the electromagnetic radiation and the materials being examined. In the visible/
infrared range the energy measured by a sensor depends upon properties such as the
pigmentation, moisture content and cellular structure of vegetation, the mineral and
moisture contents of soils and the level of sedimentation of water. At the thermal end
of the infrared range it is heat capacity and other thermal properties of the surface
and near subsurface that control the strength of radiation detected. In the microwave
range, using active imaging systems based upon radar techniques, the roughness of
the cover type being detected and its electrical properties, expressed in terms of com-
plex permittivity (which in turn is strongly influenced by moisture content) determine
the magnitude of the reflected signal. In the range 20 to 60 GHz, atmospheric oxygen
and water vapour have a strong effect on transmission and thus can be inferred by
measurements in that range. Thus each range of wavelength has its own strengths
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Fig. 1.3. Spectral reflectance characteristics of common earth surface materials in the visible
and near-to-mid infrared range. 1 Water, 2 vegetation, 3 soil. The positions of spectral bands
for common remote sensing instruments are indicated. These are discussed in the following
sections

in terms of the information it can contribute to the remote sensing process. Conse-
quently we find systems available that are optimised for and operate in particular
spectral ranges, and provide data that complements that from other sensors.

Figure 1.3 depicts how the three dominant earth surface materials of soil, veg-
etation and water reflect the sun’s energy in the visible/reflected infrared range of
wavelengths. It is seen that water reflects about 10% or less in the blue-green range, a
smaller percentage in the red and certainly no energy in the infrared range. Should the
water contain suspended sediments or should a clear water body be shallow enough
to allow reflection from the bottom then an increase in apparent water reflection will
occur, including a small but significant amount of energy in the near infrared range.
This is a result of reflection from the suspension or bottom material.

Soils have a reflectance that increases approximately monotonically with wave-
length, however with dips centred at about 1.4 µm, 1.9 µm and 2.7 µm owing to
moisture content. These water absorption bands are almost unnoticeable in very dry
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soils and sands. In addition, clay soils also have hydroxyl absorption bands at 1.4 µm
and 2.2 µm.

The vegetation curve is considerably more complex than the other two. In the
middle infrared range it is dominated by the water absorption bands at 1.4 µm, 1.9 µm
and 2.7 µm. The plateau between about 0.7 µm and 1.3 µm is dominated by plant
cell structure while in the visible range of wavelengths it is plant pigmentation that is
the major determinant. The curve sketched in Fig. 1.3 is for healthy green vegetation.
This has chlorophyll absorption bands in the blue and red regions leaving only green
reflection of any significance. This is why we see chlorophyll pigmented plants as
green.

An excellent review and discussion of the spectral reflectance characteristics of
vegetation, soils, water, snow and clouds can be found in Hoffer (1978) and the
Manual of Remote Sensing (1999). This includes a consideration of the physical
and biological factors that influence the shapes of the curves, and an indication of
the appearances of various cover types in images recorded in different wavelength
ranges.

In wavelength ranges between about 3 and 14 µm the level of solar energy actually
irradiating the earth’s surface is small owing to both the small amount of energy
leaving the sun in this range by comparison to the higher levels in the visible and
near infrared range (see Fig. 1.4), and the presence of strong atmospheric absorption
bands between 2.6 and 3.0 µm, 4.2 and 4.4 µm, and 5 and 8 µm (Chahine, 1983).
Consequently much remote sensing in these bands is of energy being emitted from
the earth’s surface or objects on the ground rather than of reflected solar radiation.

Figure 1.4 shows the relative amount of energy radiated from perfect black bodies
of different temperatures.As seen, the sun at 6000 K radiates maximally in the visible
and near infrared regime but by comparison generates little radiation in the range
around 10 µm. Incidentally, the figure shown does not take any account of how the
level of solar radiation is dispersed through the inverse square law process in its travel
from the sun to the earth. Consequently if it is desired to compare that curve to others
corresponding to black bodies on the earth’s surface then it should be appropriately
reduced.

The earth, at a temperature of about 300 K has its maximum emission around
10 to 12 µm. Thus a sensor with sensitivity in this range will measure the amount
of heat being radiated from the earth itself. Hot bodies on the earth’s surface, such
as bushfires, at around 800 K, have a maximum emission in the range of about 3 to
5 µm. Consequently to map fires, a sensor operating in that range would be used.

Real objects do not behave as perfect black body radiators but rather emit energy
at a lower level than that shown in Fig. 1.4. The degree to which an object radiates by
comparison to a black body is referred to as its emittance. Thermal remote sensing
is sensitive therefore to a combination of an object’s temperature and emittance, the
last being wavelength dependent.

Microwave remote sensing image data is gathered by measuring the strength of
energy scattered back to the satellite or aircraft in response to energy transmitted.
The degree of reflection is characterized by the scattering coefficient for the surface
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Fig. 1.4. Energy from perfect radiators (black
bodies) as a function of wavelength

material being imaged. This is a function of the electrical complex permittivity of
the material and the roughness of the surface in comparison to a wavelength of the
radiation used (Ulaby, Moore & Fung, 1982).

Smooth surfaces act as so-called specular reflectors (i.e. mirror-like) in that the
direction of scattering is predominantly away from the incident direction as shown in
Fig. 1.5. Consequently they appear dark to black in image data. Rough surfaces act
as diffuse reflectors; they scatter the incident energy in all directions as depicted in
Fig. 1.5, including back towards the remote sensing platform. As a result they appear
light in image data.A third type of surface scattering mechanism is often encountered
in microwave image data, particularly associated with manufactured features such
as buildings. This is a corner reflector effect, as seen in Fig. 1.5, resulting from the
right angle formed between a vertical structure such as a fence, building or ship and
a horizontal plane such as the surface of the earth or sea. This gives a very bright
response.

Media, such as vegetation canopies and sea ice, exhibit so-called volume scatter-
ing behaviour, in that backscattered energy emerges from many, hard to define sites
within the volume, as depicted in Fig. 1.5. This leads to a light tonal appearance in
radar imagery.

In interpreting image data acquired in the microwave region of the electromag-
netic spectrum it is important to recognise that the four reflection mechanisms of
Fig. 1.5 are present and modify substantially the tonal differences resulting from sur-
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Fig. 1.5. a Specular, b diffuse, c corner reflector and d volume scattering behaviour, encoun-
tered in the formation of microwave image data

face complex permittivity variations. By comparison, imaging in the visible/infrared
range in which the sun is the energy source, results almost always from diffuse re-
flection, allowing the interpreter to concentrate on tonal variations resulting from
factors such as those described in association with Fig. 1.3.

A comprehensive treatment of the essential principles of microwave remote sens-
ing will be found in the three volume series by Ulaby, Moore and Fung (1981, 1982,
1985).

1.1.3
Concluding Remarks

The purpose of acquiring remote sensing image data is to be able to identify and
assess, by some means, surface materials and their spatial properties. Inspection
of Fig. 1.3 reveals that cover type identification should be possible if the sensor
gathers data at several wavelengths. For example, if for each pixel, measurements
of reflection at 0.65 µm and 1.0 µm were available (i.e. we had a two band imaging
system) then it should be a relatively easy matter to discriminate between the three
fundamental cover types based on the relative values in the two bands. For example,
vegetation would be bright at 1.0 µm and very dark at 0.65 µm whereas soil would be
bright in both ranges. Water on the other hand would be black at 1.0 µm and dull at
0.65 µm. Clearly if more than two measurement wavelengths were used more precise
discrimination should be possible, even with cover types spectrally similar to each
other. Consequently remote sensing imaging systems are designed with wavebands
that take several samples of the spectral reflectance curves of Fig. 1.3. For each pixel
the set of samples can be analysed, either by photointerpretation, or by the automated
techniques to be found in Chaps. 8 and 9, to provide a label that associates the pixel
with a particular earth surface material.
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A similar situation applies when using microwave image data; viz. several differ-
ent transmission wavelengths can be used to assist in identification of cover types by
reason of their different scattering behaviours with wavelength. However a further
data dimension is available with microwave imaging owing to the coherent nature of
the radiation used. That relates to the polarizations of the transmitted and scattered
radiation. The polarization of an electromagnetic wave refers to the orientation of the
electric field during propagation. For radar systems this can be chosen to be parallel to
the earth’s surface on transmission (a situation referred to as horizontal polarization)
or in the plane in which both the incident and scattered rays lie (somewhat inappro-
priately called vertical polarisation). On scattering, some polarization changes can
occur and energy can be received as horizontally polarized and/or vertically polar-
ized. The degree of polarization rotation that occurs can be a useful indicator of
surface material.

Another consequence of using coherent radiation in radar remote sensing sys-
tems, of significance to the interpretation process, is that images exhibit a degree
of “speckle". This is a result of constructive and destructive interference of the re-
flections from surfaces that have random spatial variations of the order of one half a
wavelength, or so. Noting that the wavelengths commonly employed in radar remote
sensing are between about 30 mm and 300 mm it is usual to find images of most
common cover types showing a considerably speckled appearance. Within a homoge-
neous region for example, such as a crop field, this causes adjacent radar image pixels
to have large differences in brightness, a factor which complicates machine-assisted
interpretation.

Finally, two radar images recorded over the same region at the same time, or
closely spaced in time, can be interfered to allow topographic detail to be revealed.
Known as InSAR (for Interferometric Synthetic Aperture Radar) the technique is
now widely used for topographic mapping (Zebker and Goldstein, 1986).

1.2
Remote Sensing Platforms

Imaging in remote sensing can be carried out from both satellite and aircraft plat-
forms. In many ways their sensors have similar characteristics although differences
in their altitude and stability can lead to very different image properties.

There are essentially two broad classes of satellite program: those satellites that sit
at geostationary altitudes above the earth’s surface and which are generally associated
with weather and climate studies, and those which orbit much closer to the earth’s
surface and that are generally used for earth surface and oceanographic observations.
Usually, the low earth orbiting satellites are in a sun-synchronous orbit, in that their
orbital plane precesses around the earth at the same rate that the sun appears to move
across the earth’s surface. In this manner the satellite acquires data at about the same
local time on each orbit.

Low earth orbiting satellites can also be used for meteorological studies. Notwith-
standing the differences in altitude, the wavebands used for the geostationary and the
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low earth orbiting satellites, and for weather and earth observation satellites, are very
comparable. The major distinction in the image data they provide generally lies in
the spatial resolutions available. Whereas data acquired for earth resources purposes
generally has pixel sizes of less than 100 m, that used for meteorological purposes
(both at geostationary and lower altitudes) has a much coarser pixel, often of the
order of 1 km.

Appendix A provides detail on the commonly encountered geostationary and low
earth orbiting satellite programs over the past four decades or so. Included in that
Appendix are also the technical specifications of the data provided by each of their
significant imaging instruments.

The imaging technologies utilised in satellite programs have ranged from tradi-
tional cameras to mechanical scanners that record images of the earth’s surface by
moving the instantaneous field of view of the instrument across the earth’s surface
to record the upwelling energy.

Some weather satellites scan the earth’s surface using the spin of the satellite
itself while the sensor’s pointing direction is varied (at a slower rate) along the axis
of the satellite. The image data is then recorded in a raster-scan fashion not unlike
that used for the production of television pictures.

A more common image recording mechanism, used in the Landsat program,
has been to carry a mechanical scanner that records at right angles to the direction
of the satellite motion to produce raster-scans of data. The forward motion of the
vehicle then allows an image strip to be built up from the raster-scans. That process
is depicted in Fig. 1.6.

More recent technology utilises a “push-broom" mechanism in which a linear
imaging array with sufficient detectors is carried on the satellite, normal to the satel-
lite’s motion, such that each pixel can be recorded individually. The forward motion
of the satellite then allows subsequent pixels to be recorded along the satellite travel
direction in the manner shown in Fig. 1.7. As might be expected, the time over
which the energy emanating from the earth’s surface per pixel is larger with push
broom scanning than for the mechanical scanners, generally allowing finer spatial
resolutions to be achieved.

Aircraft scanners operate with essentially the same principles as those found on
satellites. Both mechanical scanners (often utilising rotating mirrors – see Appendix
A) and CCD arrays are commonly employed.

An interesting development in the past decade has been to employ rectangular
detector arrays which, in principle, could be used to capture a two dimensional
image underneath the satellite. They are normally used, however, to record pixels in
the across track direction, as with push broom scanners, with the other dimension
employed to record many spectral channels of data simultaneously. This is depicted
in Fig. 1.8. Often as many as 200 or so channels are recorded in this manner so that
a very good rendition of the spectra depicted in Fig. 1.3 can be obtained. As a result
the devices are often referred to as imaging spectrometers and the data described
as hyperspectral, as against multispectral when of the order of 10 wavebands are
recorded. Figure 1.9 shows the quality of the spectral data per pixel possible with an
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Fig. 1.6. Image formation by mechanical line scanning

Fig. 1.7. Push broom line scanning in the along-track direction



12 1 Sources and Characteristics of Remote Sensing Image Data

Fig. 1.8. Use of a square detector array to achieve along-track line scanning and the recoding
of many spectral measurements simultaneously

imaging spectrometer, compared with the detail obtainable from the Landsat MSS
and TM instruments.

1.3
Image Data Sources in the Microwave Region

1.3.1
Side Looking Airborne Radar and Synthetic Aperture Radar

Remote sensing image data in the microwave range of wavelengths is generally
gathered using the technique of side-looking radar, as illustrated in Fig. 1.10. When
used with aircraft platforms it is more commonly called SLAR (side looking air-
borne radar), a technique that requires some modification when used from spacecraft
altitudes, as discussed in the following.

In SLAR a pulse of electrical energy at the microwave frequency (or wavelength)
of interest is radiated to the side of the aircraft at an incidence angle of θi . By the
same principle as radars used for air navigation and shipping, some of this transmitted
energy is scattered from the ground and returned to the receiver on the aircraft. The
time delay between transmission and reflection identifies the slant distance to the
“target" from the aircraft, while the strength of the return contains information on
the so-called scattering coefficient of the target region of the earth’s surface. The
actual received signal from a single transmitted pulse consists of a continuum of
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Fig. 1.9. Vegetation spectrum recorded by AVIRIS at 10 nm spectral sampling a, along with
equivalent TM b and MSS c spectra. In a the fine absorption features resulting from at-
mospheric constituents are shown, along with features normally associated with vegetation
spectra.

reflections from the complete region of ground actually illuminated by the radar
antenna. In Fig. 1.10 this can be identified as the range beamwidth of the antenna.
This is chosen at design to give a relation between swath width and altitude, and tends
to be rather broad. By comparison the along-track, or so-called azimuth, beamwidth is
chosen as small as possible so that the reflections from a single transmitted pulse can
be regarded as having come from a narrow strip of terrain broadside to the aircraft.
The forward velocity of the aircraft is then arranged so that the next transmitted
pulse illuminates the next strip of terrain along the swath. In this manner the azimuth
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Fig. 1.10. Principle of side looking radar

beamwidth of the antenna defines the spatial resolution in the azimuth direction
whereas the time resolution possible between echos from two adjacent targets in the
range direction defines the spatial resolution in the slant direction.

From an image product viewpoint the slant range resolution is not of interest.
Rather it is the projection of this onto the horizontal plane as ground range resolution
that is of value to the user. A little thought reveals that the ground range resolution
is better at larger incidence angles and thus on the far side of the swath; it can be
shown that the ground range size of a resolution element (pixel) is given by

rg = cτ/2 sin θi

where τ is the length of the transmitted pulse and c is the velocity of light. (Often a
simple pulse is not used. Instead a so-called linear chirped waveform is transmitted
and signal processing on reception is used to compress this into a narrow pulse. For
the present discussion however it is sufficient to consider the transmitted waveform
to be a simple pulse or burst of the frequency of interest.)

The azimuth size of a resolution element is related to the length (or aperture) of
the transmitting antenna in the azimuth direction, l, the wavelength λ and the range
R0 between the aircraft and the target, and is given by

ra = R0λ/l

This expression shows that a 10 m antenna will yield an azimuth resolution of 20 m
at a slant range of 1 km for radiation with a wavelength of 20 cm. However if the
slant range is increased to say 100 km – i.e. at low spacecraft altitudes – then a
20 m azimuth resolution would require an antenna of 1 km length, which clearly is
impracticable.

Therefore when radar image data is to be acquired from spacecraft, a modification
of SLAR referred to as synthetic aperture radar (SAR) is used. Essentially this utilizes
the motion of the space vehicle, during transmission of the ranging pulses, to give an
effectively long antenna, or a so-called synthetic aperture. This principle is illustrated
in Fig. 1.11, wherein it is seen that an intentionally large azimuth beamwidth is
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Fig. 1.11. The concept of synthesizing a large antenna by utilizing spacecraft motion along
its orbital path. Here a view from above is shown, illustrating that a small real antenna is
used to ensure a large real beamwidth in azimuth. As a consequence a point on the ground is
illuminated by the full synthetic aperture

employed to ensure that a particular spot on the ground is illuminated and thus
provides reflections over a length of spacecraft travel equivalent to the synthetic
aperture required.

A discussion of the details of the synthetic aperture concept and the signal pro-
cessing required to produce a high azimuth resolution is beyond the scope of this
treatment. The matter is pursued further in Ulaby, Moore and Fung (1982), Elachi et
al. (1982), Tomiyasu (1978), and Elachi (1983, 1988).

1.4
Spatial Data Sources in General

1.4.1
Types of Spatial Data

The foregoing sections have addressed sources of multispectral digital image data.
Other sources of spatially distributed data are also often available for regions of inter-
est. These include simple maps that show topography, land ownership, roads and the
like, through to more specialised sources of spatial data such as maps of geophysical
measurements of the area. Frequently these other spatial data sources contain infor-
mation not available in multispectral imagery and often judicious combinations of
multispectral and other map-like data allow inferences to be drawn about regions on
the earth’s surface not possible when using a single source on its own. Consequently
the image analyst ought to be aware of the range of spatial data available for a region
and select that subset likely to assist in the information extraction process.

Table 1.1 is an illustration of the range of spatial data one might expect could be
available for a given region. This differentiates the data into three types according as
to whether it represents point information, line information or area information. Irre-
spective of type however, for a spatial data set to be manipulated using the techniques
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Table 1.1. Sources of spatial data

of digital image processing it must share two characteristics with multispectral data.
First it must be available in discrete form spatially, and in value. In other words it
must consist of, or be able to be converted to, pixels with each pixel describing the
properties of a given (small) area on the ground: the value ascribed to each pixel must
be expressible in digital form. Secondly it must be in correct geographic relation to
a multispectral image data set if the two are to be manipulated together. In situa-
tions where multispectral data is not used, the pixels in the spatial data source would
normally be arranged to be referenced to a map grid. It is usual however, in digital
spatial data handling systems, to have all entries in the data set relating to a particular
geographical region, mutually registered and referenced to a map base such as the
UTM grid system. When available in this manner the data is said to be geocoded.
Means by which different data sets can be registered are treated in Sect. 2.5. Such a
database is depicted in Fig. 1.12

Fig. 1.12. An integrated spatial data source database
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1.4.2
Data Formats

Not all sources of spatial data are available originally in the pixel oriented digital
format depicted in Fig. 1.12. Sometimes the data will be available as analog maps
that require digitisation before entry into a digital data base. That is particularly the
case with line and area data types, in which case consideration has to be given also
to the “value" that will be ascribed to a particular pixel. In line spatial data sources
the pixels could be called zero if they were not part of a line and coded to some other
number if they formed part of a line of a given type. For a road map, for example,
pixels that fall on highways might be given a value of 1 whereas those on secondary
roads could be given a value of 2, and so on. On display, the different numbers could
be interpreted and output as different colours. In a similar manner numbers can be
assigned to different regions when digitizing area spatial data sources.

Conceptually the digitization process may not be straightforward. Consider the
case for example, of needing to create a digital topographic map from its analog
contour map counterpart. Figure 1.13 illustrates this process. First it is necessary to
convert the contours on the paper map to records contained in a computer. This is
done by using an input device to mark a series of points on each contour between
which the contour is regarded by the computer to be a straight line. Information
on a contour at this stage is stored in the computer’s memory as a file of points.
This is referred to as vector format owing to the vectors that can be drawn from
point to point (in principle) to reconstruct a contour on a display. Some spatial data
handling computer systems operate in vector format entirely. However to be able to
exploit the techniques of digital image processing the vector formatted data has to
be turned into a set of pixels arranged on rectangular grid centres. This is referred
to as raster format (or sometimes grid format); the elevation values for each pixel
in the raster form are obtained by a process of interpolation over the points recorded
on the contours. The operation is referred to as vector to raster conversion and is an
essential step in entering map data into a digital spatial data base.

Raster format is a natural one for the representation of multispectral image data
since data of that type is generated by digitising scanners, is transmitted digitally and

Fig. 1.13. Definition of vector and raster format using the illustration of digitising contour
data
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is recorded digitally. Moreover most image forming devices such as digital cameras
operate on a raster display basis, compatible with digital data acquisition and storage.
Raster format however is also appealing from a processing point of view since the
logical records for the data are the pixel values (irrespective of whether the data is
of the point, line or area type) and neighbourhood relationships are easy to establish
by means of the pixel addresses. This is important for processing operations that
involve near neighbouring groups of pixels. In contrast, vector format does not offer
this feature.

1.4.3
Geographic Information Systems (GIS)

The amount of data to be handled in a database that contains spatial sources such as
satellite and aircraft imagery along with maps, as listed in Table 1.1, is enormous, par-
ticularly if the data covers a large geographical region. Quite clearly therefore thought
has to be given to efficient means by which the data types can be stored and retrieved,
manipulated, analysed and displayed. This is the role of the geographic information
system (GIS). Like its commercial counterpart, the management information system
(MIS), the GIS is designed to carry out operations on the data stored in its database,
according to a set of user specifications, without the user needing to be knowledge-
able about how the data is stored and what data handling and processing procedures
are utilized to retrieve and present the information required. Unfortunately because
of the nature and volume of data involved in a GIS many of the MIS concepts devel-
oped for data base management systems (DBMS) cannot be transferred directly to
GIS design although they do provide guidelines. Instead new design concepts have
been needed, incorporating the sorts of operation normally carried out with spatial
data, and attention has had to be given to efficient coding techniques to facilitate
searching through the large numbers of maps and images often involved.

To understand the sorts of spatial data manipulation operations of importance in
GIS one must take the view of the resource manager rather than the data analyst.
Whereas the latter is concerned with image reconstruction, filtering, transformation
and classification, the manager is interested in operations such as those listed in
Table 1.2. These provide information from which management strategies and the
like can be inferred. Certainly, to be able to implement many, if not most, of these a
substantial amount of image processing may be required. However as GIS technology
progresses it is expected that the actual image processing being performed would be
transparent to the resource manager; the role of the data analyst will then be in part
of the GIS design. A good discussion of the essential issues in GIS will be found in
Bolstad (2002).

A problem which can arise in image data bases of the type encountered in a GIS is
the need to identify one image by reason of its similarity to another. In principle, this
could be done by comparing the images pixel-by-pixel; however the computational
demand in so doing would be enormous for images of any practical size. Instead
effort has been directed to developing codes or signatures for complete images that
will allow efficient similarity searching. For example an image histogram could be
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Table 1.2. Some GIS data manipulation operations

used (see Sect. 4.2); however as geometric detail is not preserved in a histogram
this is rarely a suitable code for an image on its own. One effective possibility that
has been explored is the use of image pyramids. A pyramid is created by combining
groups of pixels in a neighbourhood to produce a new composite pixel of reduced
resolution, and thus a low resolution image with fewer pixels. This process is repeated
on the processed image to form a new image of lower resolution (and fewer pixels)
still. Ultimately the image could be reduced to one single pixel that is a global
measure of the image’s brightness. Since pixels are combined in neighbourhood
groups, spatial detail is propagated up through the pyramid, albeit at decreasing
resolution. Figure 1.14 illustrates how an image pyramid is constructed by simple
averaging of non-overlapping sets of 2 × 2 pixels. It is a relatively easy matter
(see Problem 1.6) to show that the additional memory required to store a complete
pyramid, constructed as in the figure, is only 33% more than that required to store
just the image itself.

Fig. 1.14. Construction of an image pyramid by successively averaging groups of 2×2 pixels
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Having developed an image pyramid, signatures that can be used to undertake
similarity searching include the histograms computed over rows and columns in the
uppermost levels of the pyramid (see Problem 1.7). A little thought shows that this
allows an enormous number of images to be addressed, particularly if each pixel is
represented by an 8 bit brightness value. As a result very fast searching can be carried
out on these reduced representations of images.

Image pyramids are discussed by Rosenfeld (1982) and have been considered in
the light of image similarity searching by Chien (1980), and data mining by Datcu
et al. (2003).

There is sometimes an image processing advantage to be obtained when using a
pyramid representation of an image. In edge detection, for example, it is possible to
localise edges quickly, without having to search every pixel of an image, by finding
apparent edges (regions) in the upper levels of the pyramid. The succeeding lower
pixel groupings are then searched to localise the edges better.

Finally the pyramid representation of an image is felt to have some relation
to human perception of images. The upper levels contain global features and are
therefore not unlike the picture we have when first looking at a scene – generally
we take the scene in initially “as a whole" and either miss or ignore detail. Then
we focus on regions of interest for which we pay attention to detail because of the
information it provides us with.

1.4.4
The Challenge to Image Processing and Analysis

Much of the experience gained with digital image processing and analysis in remote
sensing has been with multispectral image data. In principle however any spatial data
type in digital format can be processed using the techniques and procedures presented
in this book. Information extraction from geophysical data could be facilitated, for
example, if a degree of sharpening is applied prior to photointerpretation, while
colour density slicing could assist the interpretation of topography. However the real
challenge to the image analyst arises when data of mixed types are to be processed
together. Several issues warrant comment.

The first relates to differences in resolution, an issue that arises also when treating
multi-source satellite data such as Landsat ETM+ and Aqua MODIS. The analyst
must decide, for example what common pixel size will be used when co-registering
the data, since either resolution or coverage will normally be sacrificed. Clearly this
decision will be based on the needs of a particular application and is a challenge
more to the analyst than the algorithms.

The more important consideration however is in relation to techniques for ma-
chine assisted interpretation. There is little doubt that combined multispectral and,
say, topographic or land ownership maps can yield more precise thematic (i.e. cat-
egory of land cover, etc.) information for a particular region than the multispectral
data on its own. Indeed the combination of these sources is often employed in pho-
tointerpretive studies.
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The issue is complicated further when it is recalled that much of the non-spectral,
spatial data available is not in numerical point form but rather is in nominal area or
line format.With these, image analysis algorithms developed algebraically will not be
suitable. Rather same degree of logical processing of labels combined with algebraic
processing of arithmetic values (such as pixel brightnesses) is necessary.

Chapter 12 addresses this issue by considering several numerical and knowledge-
based image analysis methods, which lend themselves to handling both numerical
and non-numerical data sources.

1.5
A Comparison of Scales in Digital Image Data

Because of IFOV differences the digital images provided by various remote sensing
sensors will find application at different scales. As a guide Table 1.3 relates scale
to spatial resolution; this has been derived somewhat simplistically by considering
an image pixel to be too coarse if it approaches 0.1 mm in size on a photographic
product at a given scale. Thus Landsat MSS data is suggested as being suitable for
scales smaller than about 1 : 500,000 whereas NOAA AVHRR data is suitable for
scales below 1 : 10,000,000. Detailed discussions of image quality in relation to scale
will be found in Welch (1982), Forster (1985), Woodcock and Strahler (1987) and
Light (1990).

Table 1.3. Suggested maximum scales of photographic products as a function of effective
ground pixel size (based on 0.1 mm printed pixel)

Scale Approx. Pixel Size (m) Sensor (nominal)

1 : 10,000 1 Ikonos panchromatic
1 : 50,000 5 aircraft MSS, Ikonos XS
1 : 100,000 10 Spot HRG
1 : 250,000 25 Spot HRVIR, Landsat TM
1 : 500,000 50 Landsat TM, LISS
1 : 5,000,000 500 OCTS, OCM
1 : 10,000,000 1000 NOAA AVHRR, MODIS
1 : 50,000,000 5000 GMS thermal IR band
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Problems

1.1 Plot graphs of pixel size in equivalent ground metres as a function of angle from nadir
across a swath for

a) Landsat MSS with IFOV of 0.086 mrad, FOV = 11.56◦,
b) NOAA AVHRR with IFOV = 1.3 mrad, FOV = 2700 km, altitude = 833 km,
c) an aircraft scanner with IFOV = 2.5 mrad, FOV = 80◦ flying at 1000 mAGL (above ground

level),

producing separate graphs for the along track and across track dimensions of the pixel. Replot
the graphs to indicate pixel size relative to that at nadir.

1.2 Imagine you have available image data from a multispectral scanner that has two narrow
spectral bands. One is centred on 0.65 µm and the other on 1.0 µm wavelength. Suppose the
corresponding region on the earth’s surface consists of water, vegetation and soil.

Construct a graph with two axes, one representing the brightness of a pixel in the 0.65 µm
band and the other representing the brightness of the pixel in the 1.0 µm band. In this show
where you would expect to find vegetation pixels, soil pixels and water pixels. Note how
straight lines could, in principle, be drawn between the three groups of pixels so that if a
computer had the equations of these lines stored in its memory it could use them to identify
every pixel in the image.

Repeat the exercise for a scanner with bands centred on 0.95 µm and 1.05 µm.

1.3 There are 460 185 km × 185 km frames of Landsat data that cover Australia. Compute
the daily data rate (in Gbit/day) for Australia provided by the ETM+ sensor on Landsat 7,
assuming all possible scenes are recorded.
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1.4 Assume a “frame" of image data consists of a segment along the track of the satellite,
as long as the swath is wide. Compute the data volume of a single frame from each of the
following sensors and produce a graph of average data volume per wavelength band versus
pixel size.
NOAA AVHRR
Aqua MODIS
ADEOS AVNIR (multispectral)
Landsat ETM+
Spot HRG (multispectral)

1.5 Determine a relationship between swath width and orbital repeat cycle for a polar orbiting
satellite at an attitude of 800 km, assuming that adjacent swaths overlap by 10% at the equator.

1.6 An image pyramid is to be constructed in the following manner: Groups of 2 × 2 pixels
are averaged to form single pixels and thereby reduce the number of pixels in the image by
a factor of 4, while reducing its resolution as well. Groups of 2 × 2 pixels in the reduced
resolution image are then averaged to form a third version of lower resolution still. This
process can be continued until the original image is represented by a pyramid of progressively
lower resolution images with a single pixel at the top.

Determine the additional memory required to store the complete pyramid by comparison
to storing just the image itself. (Hint: Use the properties of a geometric progression.)

Repeat the exercise for the case of a pyramid built by averaging 3 × 3 groups of pixels.

1.7 A particular image data base is to be constructed to allow similarity searching to be
performed on sets of binary images i.e. on images in which pixels take on brightness values
of 0 or 1 only. Image pyramids are to be stored in the data base where each succeeding higher
level in a pyramid has pixels derived from 3 × 3 groups in the immediately lower level. The
value of the pixel in the higher level is to be that of the majority of pixels in the corresponding
lower group. The uppermost level in the pyramid is a 3 × 3 image.

(i) How much additional storage is required to store the pyramids rather than just the
original images?

(ii) The search algorithm to be implemented on the top level of the pyramid is to consist
of histogram comparison. In this histograms are taken of the pixels along each row and
down each column and a pair of images are ‘matched’ when all of these histograms
are the same for both images. In principle, how many distinct images can be addressed
using the top level only?

(iii) An alternative search algorithm to that mentioned in (ii) is to compute just the simple
histogram of all the pixels in the top level of the pyramid. How many distinct images
could be addressed in this case using the top level only?

(iv) Would you recommend storing the complete pyramid for each image or just the original
image plus histogram information for the upper levels of a pyramid?

(v) An alternative means by which the upper levels of the pyramid could be coded is simply
by counting and storing the fraction of 1’s which occurs in each of the first few upper-
most levels. Suppose this is done for the top three levels. Show how a feature or pattern
space could be constructed for the complete image data base, using the 1’s fractions for
the upper levels in each image, which can then be analysed and searched using pattern
classification procedures.

1.8 A particular satellite carries a high resolution optical sensor with 1 m spatial resolution
and is at 800 km altitude in a near polar orbit. Orbital period is related to orbital radius by:
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T = 2π

√
r3

µ

where µ = 3.986 × 1014m3s−2, and orbital radius is given by

r = a + h

in which a = 6.378 Mm and h is altitude.
If the orbit is arranged such that complete earth coverage is possible, how long will that

take if there are 2048 pixels per swath? Consequently, what sorts of applications would such
a satellite be used for?

1.9 Suppose a particular sensor recorded reflectance data in just two wavebands. Further,
suppose its radiometric resolution were only 2 bits – i.e. are just four levels of grey available
in each of the two bands. What is the theoretical maximum number of different cover types
that could be discriminated with the sensor – i.e. how many different unique brightness value-
waveband pairs are available? Those pairs are in fact the individually resolvable sites in the
coordinate space discussed in problem 1.2.

Show that if a sensor has c channels and a radiometric resolution of b bits that the total
number of sites in the space is 2bc. How many different sites are there for the following
sensors?

Spot HRV
Landsat Thematic Mapper
OrbView2 SeaWiFS
Aqua MODIS
EO-1 Hyperion.

For an image of 512 × 512 pixels how many sites, on the average, will be occupied for each
of the sensors above?



2
Error Correction
and Registration of Image Data

When image data is recorded by sensors on satellites and aircraft it can contain
errors in geometry and in the measured brightness values of the pixels. The latter
are referred to as radiometric errors and can result from the instrumentation used
to record the data, from the wavelength dependence of solar radiation and from the
effect of the atmosphere. Image geometry errors can arise in many ways. The relative
motions of the platform, its scanners and the earth, for example, can lead to errors
of a skewing nature in an image product. Non-idealities in the sensors themselves,
the curvature of the earth and uncontrolled variations in the position and attitude of
the remote sensing platform can all lead to geometric errors of varying degrees of
severity.

When an image is to be utilized it is frequently necessary to make corrections
in brightness and geometry if the accuracy of interpretation, either manually or by
machine, is not to be prejudiced. For many applications only the major sources of
error will require compensation whereas in others more precise correction will be
necessary.

It is the purpose of this chapter to discuss the nature of the radiometric and
geometric errors commonly encountered in remote sensing images and to develop
computational procedures that are used for their compensation. While this is the
principal intention, the procedures to be presented find more general application
as well, such as in registering together sets of images of the same region but at
different times, and in performing operations such as scale changing and zooming
(magnification).

Radiometric correction procedures for hyperspectral imagery are treated sepa-
rately in Chap. 13.

2.1
Sources of Radiometric Distortion

Mechanisms that affect the measured brightness values of the pixels in an image can
lead to two broad types of radiometric distortion. First, the relative distribution of
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brightness over an image in a given band can be different to that in the ground scene.
Secondly, the relative brightness of a single pixel from band to band can be distorted
compared with the spectral reflectance character of the corresponding region on the
ground. Both types can result from the presence of the atmosphere as a transmission
medium through which radiation must travel from its source to the sensors, and can
be a result also of instrumentation effects.

2.1.1
The Effect of the Atmosphere on Radiation

Figure 2.1 depicts the effect the atmosphere has on the measured brightness value
of a single pixel for a passive remote sensing system in which the sun is the source
of energy, as in the visible and reflective infrared regions. In the absence of an
atmosphere the signal measured by the sensor will be a function simply of the level
of energy from the sun, actually incident on the pixel, and the reflectance properties
of the pixel itself. However the presence of the atmosphere can modify the situation
significantly as depicted in the diagram. Before discussing this in detail it is of value
to introduce some definitions of radiometric quantities as these will serve to simplify
explanations and will allow correction equations to be properly formulated.

Imagine the sun as a source of energy emitting at a given rate of Joules per second,
or Watts. This energy radiates through space isotropically in an inverse square law
fashion so that at a given distance the sun’s emission can be measured as Watts per
square metre (given as the power emitted divided by the surface area of a sphere at
that distance). This power density is called irradiance, a property that can be used
to describe the strength of any emitter of electromagnetic energy.

Fig. 2.1. The effect of the atmosphere in determining various paths for energy to illuminate a
(equivalent ground) pixel and to reach the sensor



2.1 Sources of Radiometric Distortion 29

We can measure a level of solar irradiance at the earth’s surface. If the surface is
perfectly diffuse then this amount is scattered uniformly into the upper hemisphere.
The amount of power density scattered in a particular direction is defined by its
density per solid angle, since equal amounts are scattered into equal cones of solid
angle. This quantity is called radiance and has units of Watts per square metre per
steradian (Wm−2sr−1).

The emission of energy by bodies such as the sun is wavelength dependent, as
seen in Fig. 1.4, so that often the term spectral irradiance is used to describe how
much power density is available incrementally across the wavelength range. Spectral
irradiance is typically measured in Wm−2µm−1.

As an illustration of how these quantities might be used suppose, in the absence
of atmosphere, the solar spectral irradiance at the earth is Eλ. If the solar zenith angle
(measured from the normal to the surface) is θ as shown in Fig. 2.1 then the spectral
irradiance (spectral power density) on the earth’s surface is Eλ cos θ . This gives an
available irradiance between wavelengths λ1 and λ2 of

Eos =
∫ λ2

λ1

Eλ cos θdλ. Wm−2

In remote sensing the wavebands used (�λ = λ2 −λ1) are frequently narrow enough
to assume

Eos = E�λ cos θ�λ Wm−2 (2.1)

where E�λ is the average spectral irradiance in the band �λ.
Suppose the surface has a reflectance R. This describes what proportion of the

incident energy is reflected. If the surface is diffuse then the radiance scattered into
the upper hemisphere and available for measurement is

L = E�λ cos θ�λR/π Wm−2sr−1 (2.2)

where the divisor π accounts for the upper hemisphere of solid angle. Knowing L it
is possible to determine the power detected by a sensor, and the digital count value
(or grey level) given in the digital data product from a particular sensor which is
directly related to the radiance of the scene. If we call the digital value (between 0
and 255 for example) C, then the measured radiance of a particular pixel is

L = Ck + Lmin Wm−2sr−1 (2.3)

where k = (Lmax − Lmin)/Cmax in which Lmax and Lmin are the maximum and
minimum measurable radiances of the sensor. These are usually available from the
sensor manufacturer or operator.

Equation (2.2) relates to the ideal case of no atmosphere. When an atmosphere is
present there are several mechanism that must be taken into account that modify (2.2).
These are a result of scattering and absorption by the particles in the atmosphere.

Absorption by atmospheric molecules is a selective process that converts incom-
ing energy into heat. In particular, molecules of oxygen, carbon dioxide, ozone and
water attenuate the radiation very strongly in certain wavebands. Sensors commonly
used in solid earth and ocean remote sensing are usually designed to operate away
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from these regions so that the effects are small. Scattering by atmospheric particles
is then the dominant mechanism that leads to radiometric distortion in image data
(apart from sensor effects).

There are two broadly identified scattering mechanisms. The first is scattering
by the air molecules themselves. This is called Rayleigh scattering and is an inverse
fourth power function of the wavelength used. The other is called aerosol or Mie
scattering and is a result of scattering of the radiation from larger particles such as
those associated with smoke, haze and fumes. These particulates are of the order of
one tenth to ten wavelengths. Mie scattering is also wavelength dependent, although
not as strongly as Rayleigh scattering. When the atmospheric particulates become
much larger than a wavelength, such as those common in fogs, clouds and dust, the
wavelength dependence disappears.

In a clear ideal atmosphere Rayleigh scattering is the only mechanism present.
It accounts, for example, for the blueness of the sky. Because the shorter (blue)
wavelengths are scattered more than the longer (red) wavelengths we are more likely
to see blue when looking in any direction in the sky. Likewise the reddish appear-
ance of sunset is also caused by Rayleigh scattering. This is a result of the long
atmospheric path the radiation has to follow at sunset during which most short wave-
length radiation is scattered away from direct line of sight by comparison to the longer
wavelengths.

In contrast to Rayleigh scattering, fogs and clouds appear white or bluish-white
owing to the (near) non-selective scattering caused by the larger particles.

We are now in the position to appreciate the effect of the atmosphere on
the radiation that ultimately reaches a sensor. We will do this by reference to
Fig. 2.1, commencing with the incoming solar radiation. The effects are identified by
name:

Transmittance. In the absence of atmosphere transmittance is 100%. How-
ever because of scattering and absorption not all of the available solar ir-
radiance reaches the ground. The amount that does, relative to that for no
atmosphere, is called the transmittance. Let this be called Tθ the subscript
indicating its dependence on the zenith angle of the source because of the
longer path length through the atmosphere. In a similar way there is an at-
mospheric transmittance Tθ to be taken into account between the point of
reflection and the sensor.

Sky irradiance. Because the radiation is scattered on its travel down through
the atmosphere a particular pixel will be irradiated both by energy on the
direct path in Fig. 2.1 and also by energy scattered from atmospheric con-
stituents. The path for the latter is undefined and in fact diffuse. A pixel can
also receive some energy that has been reflected from surrounding pixels
and then, by atmospheric scattering, is again directed downwards. This is
the sky irradiance component 2 identified in Fig. 2.1. We will call the sky
irradiance at the pixel ED .

Path radiance. Again because of scattering alone, radiation can reach the
sensor from adjacent pixels and also via diffuse scattering of the incoming
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radiation that is actually scattered towards the sensor by the atmospheric
constituents before it reaches the ground. These two components are referred
to as path radiance and denoted Lp.

Having defined these effects we are now in the position to determine how the radiance
measured by the sensor is affected by the presence of the atmosphere. First the total
irradiance at the earth’s surface now becomes, instead of (2.1)

EG = E�λTθ cos θ �λ + ED Wm−2

where, for simplicity, it has been assumed that the diffuse sky irradiance is not a
function of wavelength (in the waveband of interest). The radiance therefore due to
this global irradiance of the pixel becomes

LT = R

π
{E�λTθ cos θ�λ + ED} Wm−2sr−1

Above the atmosphere the total radiance available to the sensor then becomes

Ls = RTφ

π
{E�λTθ cos θ�λ + ED} + Lp Wm−2sr−1 (2.4)

It is this quantity therefore that should be used in (2.3) to relate the digital count
value to measured radiance.

2.1.2
Atmospheric Effects on Remote Sensing Imagery

A result of the scattering caused by the atmosphere is that fine detail in image data
will be obscured. Consequently it is important in applications where one is dependent
upon the limit of sensor resolution available, such as in urban studies, to take steps
to correct for atmospheric effects.

It is important also to consider carefully the effects of the atmosphere on remote
sensing systems with wide fields of view in which there will be an appreciable
difference in atmospheric path length between nadir and the extremities of the swath.
This will be of significance for example with aircraft scanners and satellite missions
such as NOAA.

Finally, and perhaps most importantly, because both Rayleigh and Mie scattering
are wavelength dependent the effects of the atmosphere will be different in the differ-
ent wavebands of a given sensor system. In the case of the Landsat Thematic Mapper
the visible blue band (0.45 to 0.52 µm) can be affected appreciably by comparison
to the middle infrared band (1.55 to 1.75 µm). This leads to a loss in calibration of
the set of brightnesses associated with a particular pixel.

Methods for correcting for the radiometric distortion caused by the atmosphere
are discussed in Sect. 2.2.

2.1.3
Instrumentation Errors

Radiometric errors within a band and between bands can also be caused by the design
and operation of the sensor system. Band to band errors from this source are normally
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Fig. 2.2. a Transfer characteristic of a radiation detector; b Hypothetical mismatches in de-
tector characteristics in the same band

ignored by comparison to band to band errors from atmospheric effects. However
errors within a band can be quite severe and often require correction to render an
image product useful.

The most significant of these errors is related to the detector system. An ideal
radiation detector should have a transfer characteristic (radiation in, signal out) as
shown in Fig. 2.2a. This should be linear so that there is a proportional increase
and decrease of signal with detected radiation level. Real detectors will have some
degree of nonlinearity (which is ignored here) and will also give a small signal out
even when no radiation is being detected. Historically this is known as dark current
and is related to the residual electronic noise in the system at any temperature above
absolute zero; we will call it an “offset". The slope of the characteristic is frequently
called its transfer gain or just simply “gain".

Most remote sensors involve a multitude of detectors. In the case of the Landsat
MSS there were 6 per band, for the Landsat TM there are 16 per band and for the
SPOT HRV there are 6000 in the panchromatic mode of operation. Each of these
detectors will have slightly different transfer characteristics as described by their
gains and offsets, as shown in Fig. 2.2b.

In the case of scanners such as the TM and MSS these imbalances will lead to
striping in the across swath direction as shown in Fig. 2.4a. For the HRV longitudinal
striping may occur.

2.2
Correction of Radiometric Distortion

In contrast to geometric correction, in which all sources of error are often rectified
together, radiometric correction procedures must be specific to the nature of the
distortion.
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2.2.1
Detailed Correction of Atmospheric Effects

Rectifying image data to remove as much as possible the degrading effects of the
atmosphere entails modelling the scattering and absorption processes that take place
and establishing how these determine both the transmittances of the various paths
and the different components of sky irradiance and path radiance. When available
these can be used in (2.3) and (2.4) to relate the digital count values given for the
pixels in each band of data C, to the true reflectance R of the surface being imaged.
An example of how this can be done is given by Forster (1984) for the case of Landsat
MSS data; Forster also gives source material and tables to assist in the computations.
Some aspects of this example are given here to establish relative quantities.

Forster considers the case of a Landsat 2 MSS image in the wavelength range
0.8 to 1.1 µm acquired at Sydney, Australia on 14 December 1980 at 9:05 a.m. local
time. At the time of overpass the atmospheric conditions were

temperature 29◦C
relative humidity 24%
atmospheric pressure 1004 mbar
visibility 65 km

measured at 30 m above sea level.

Based upon the equivalent mass of water vapour in the atmosphere (com-
puted from temperature and humidity measurements) the absorption effect of water
molecules was computed. This was the only molecular absorption mechanism con-
sidered significant. The measured value for visibility was used to estimate the effect
of Mie scattering. Together with the known effect of Rayleigh scattering at that wave-
length, these were combined to give the so-called total normal optical thickness of
the atmosphere. Its value is for this example

τ = 0.15

The transmittance of the atmosphere for an angle of incidence θ of the path is given by

T = exp(−τ secθ)

Thus for a solar zenith angle of 38◦ (at the time of overpass) and a nadir viewing
satellite we have (see Fig. 2.1)

Tθ = 0.827

Tφ = 0.861

In the waveband of interest Forster notes that the solar irradiance at the earth’s surface
in the absence of an atmosphere is E0 = 256 Wm−2. He further computes that the
total global irradiance at the earth’s surface is 186.6 Wm−2. Noting from (2.4) that
the term in brackets is the global irradiance this leaves the total diffuse sky irradiance
as 19.6 Wm−2 – i.e. about 10% of the global irradiance for this example.

Based upon correction algorithms given by Turner and Spencer (1972) which ac-
count for Rayleigh and Mie scattering and atmospheric absorption Forster computes



34 2 Error Correction and Registration of Image Data

the path radiance for this example as

Lp = 0.62 Wm−2sr−1

so that (2.4) becomes

Ls =R70.274(186.6) + 0.62

i.e. Ls = 51.5R7 + 0.62 (2.5)

where the subscript on R refers to the band.
For the band 7 sensors on Landsat 2 at the time of overpass it can be established

in (2.3) that

k = (Lmax − Lmin)/Cmax

= (39.1 − 1.1)/63 Wm−2sr−1 per digital value

= 0.603

so that (2.3) becomes

Ls = 0.603 C7 + 1.1 Wm−2sr−1

which when combined with (2.5) gives

R7 = 0.0118 C7 + 0.0094

or = 1.18 C7 + 0.94%

This gives a means by which the % reflectance in band 7 can be computed from
the digital count value available in the digital image data. By carrying out similar
computations for the other three MSS bands the absolute and differential effects of
the atmosphere can be removed. For band 5 for example

R5 = 0.44 C5 + 0.5%

Note that the effects of the atmosphere (and path radiance in particular) are greater
for band 5. This is because of the increasing effect of scattering with decreasing
wavelength. If all four MSS bands were considered the effect would be greatest in
band 4 and least in band 7.

2.2.2
Bulk Correction of Atmospheric Effects

Frequently, detailed correction for the scattering and absorbing effects of the atmo-
sphere is not required and often the necessary ancilliary information such as visibility
and relative humidity is not readily available. In those cases, if the effect of the atmo-
sphere is judged to be a problem in imagery, approximate correction can be carried
out in the following manner. First it is assumed that each band of data for a given
scene should have contained some pixels at or close to zero brightness value but that
atmospheric effects, and especially path radiance, has added a constant value to each
pixel in a band. Consequently if histograms are taken of each band (i.e. graphs of the
number of pixels present as a function of brightness value for a given pixel) the lowest
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Fig. 2.3. Illustration of the effect of path radiance, resulting from atmospheric scattering, on
the histograms of four bands of image data at different wavelengths

significant occupied brightness value will be non-zero as shown in Fig. 2.3. Moreover
because path radiance varies as λ−α (with α between 0 and 4 depending upon the
extent of Mie scattering) the lowest occupied brightness value will be further from
the origin for the lower wavelengths as depicted in Fig. 2.3. Correction amounts first
to identifying the amount by which each histogram is “shifted" in brightness away
from the origin and then subtracting that amount from each pixel brightness in that
band.

It is clear that the effect of atmospheric scattering as implied in the histograms
of Fig. 2.3 is to lift the overall brightness value of an image in each band. In the case
of a colour composite product (see Sect. 3.2) this will appear as a whitish-bluish
haze. Upon correction in the manner just described this haze will be removed and
the dynamic range of image intensity will be improved. Consequently the procedure
of atmospheric correction outlined in this section is frequently referred to as haze
removal.
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2.2.3
Correction of Instrumentation Errors

Errors in relative brightness such as the within-band line striping referred to in
Sect. 2.1.3 and shown in Fig. 2.4a can be rectified to a great extent in the following
way. First it is assumed that the detectors used for data aquisition within a band
produce signals statistically similar to each other. In other words if the means and
standard deviations are computed for the signals recorded by the detectors then they
should be the same. This requires the assumption that detail within a band doesn’t
change significantly over a distance equivalent to that of one scan covered by the
set of the detectors (e.g. 474 m for the six scan lines of Landsats 1,2,3 MSS). This
is a reasonable assumption in terms of the mean and standard deviation of the pixel
brightness, so that differences in those statistics among the detectors can be attributed

Fig. 2.4. a Landsat MSS visible green image showing severe line striping; b The same image
after destriping by matching the mean brightnesses and standard deviations of each detector
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to gain and offset mismatches as displayed in Fig. 2.2b. These mismatches can be
detected by calculating pixel mean brightness and standard deviation using lines
of image data known to come from a single detector. In the case of Landsat MSS
this will require the data on every sixth line to be used. In a like manner five other
measurements of mean brightness and standard deviation are computed as indica-
tions of the performances of the other five MSS detectors. Correction of radiometric
mismatches among the detectors can then be effected by adopting one sensor as a
standard and adjusting the brightness of all pixels recorded by each other detector
so that their mean brightnesses and standard deviations match those of the standard
detector. This can be done according to

y = σd

σi

x + md − σd

σi

mi (2.6)

where x is the old brightness of a pixel and y is its new (destriped) value; md and σd

are the reference values of mean brightness and standard deviation and mi and σi are
the mean and standard deviation of the detector under consideration. Alternatively an
independent reference mean brightness and standard deviation can be used. This can
allow a degree of contrast enhancement to be produced during radiometric correction.

The method described is frequently referred to as destriping. Figure 2.4 gives an
example of destriping a Landsat MSS image in this manner.

The destriping effected by (2.6) is straightforward, but capable only of matching
detector responses on the basis of means and standard deviations. A more complete
destriping procedure should result if the histograms of the remaining detectors are
matched fully to that of the reference detector using the methods of Sect. 4.5. This
approach has been used by Weinreb et al. (1989) for destriping weather satellite
imagery.

2.3
Sources of Geometric Distortion

There are potentially many more sources of geometric distortion of image data than
radiometric distortion and their effects are more severe. They can be related to a
number of factors, including

(i) the rotation of the earth during image acquisition,
(ii) the finite scan rate of some sensors,
(iii) the wide field of view of some sensors,
(iv) the curvature of the earth,
(v) sensor non-idealities,
(vi) variations in platform altitude, attitude and velocity, and
(vii) panoramic effects related to the imaging geometry.

It is the purpose of this section to discuss the nature of the distortions that arise from
these effects; Sect. 2.4 discusses means by which the distortions can be compensated.

To appreciate why geometric distortion occurs, in some cases it is necessary to
envisage how an image is formed from sequential lines of image data. If one imagines



38 2 Error Correction and Registration of Image Data

Fig. 2.5. Display grid commonly used to build up an image from the digital data stream of
pixels generated by a sensor

that a particular sensor records L lines of N pixels each then it would be natural to
form the image by laying the L lines down successively one under the other. If the
IFOV of the sensor has an aspect ratio of unity – i.e. the pixels are the same size
along and across the scan – then this is the same as arranging the pixels for display
on a square grid, such as that shown in Fig. 2.5. The grid intersections are the pixel
positions and the spacing between those grid points is equal to the sensor’s IFOV.

2.3.1
Earth Rotation Effects

Line scan sensors (Fig. 1.6) such as the Landsat TM, and the MODIS on Aqua take
a finite time to acquire a frame of image data. The same is true of push broom
scanners such as the SPOT HRV (Fig. 1.7). During the frame acquisition time the
earth rotates from west to east so that a point imaged at the end of the frame would
have been further to the west when recording started. Therefore if the lines of image
data recorded were arranged for display in the manner of Fig. 2.5 the later lines would
be erroneously displaced to the east in terms of the terrain they represent. Instead, to
give the pixels their correct positions relative to the ground it is necessary to offset
the bottom of the image to the west by the amount of movement of the ground during
image acquisition, with all intervening lines displaced proportionately as depicted
in Fig. 2.6. The amount by which the image has to be skewed to the west at the end
of the frame depends upon the relative velocities of the satellite and earth and the
length of the image frame recorded. An example is presented here for Landsat 7.

The angular velocity of the satellite is ω0 = 1.059 mrad s−1 so that a nominal
L = 185 km frame on the ground is scanned in

ts = L/(reω0) = 27.4 s

where re is the radius of the earth (6.37816 Mm).
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Fig. 2.6. The effect of earth rotation on scanner imagery. a Image formed according to Fig. 2.5
in which lines are arranged on a square grid; b Offset of successive lines to the west to correct
for the rotation of the earth’s surface during the frame acquisition time

The surface velocity of the earth is given by

ve = ωere cos λ

where λ is latitude and ωe is the earth rotational velocity of 72.72µrad s−1.At Sydney,
Australia λ = 33.8◦ so that

ve = 385.4 ms−l

During the frame acquisition time the surface of the earth moves to the east by

�xe = vets = 10.55 km at 33.8◦S latitude

This represents 6% of the frame size. Since the satellite does not pass directly north-
south this movement has to be corrected by the inclination angle. At Sydney this is
approximately 11◦ so that the effective sideways movement of the earth is

�x = �xe cos 11◦ = 10.34 km

Consequently if steps are not taken to correct an image from Landsat 7 for the effect
of earth rotation then the image will contain about a 6% skew distortion to the east.

2.3.2
Panoramic Distortion

For scanners used on spacecraft and aircraft remote sensing platforms the angular
IFOV is constant. As a result the effective pixel size on the ground is larger at the
extremities of the scan than at nadir, as illustrated in Fig. 2.7. In particular, if the IFOV
is β and the pixel dimension at nadir is p then its dimension in the scan direction at
a scan angle of θ as shown is

pθ = βh sec2θ = p sec2θ (2.7a)
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Fig. 2.7. Effect of scan angle on pixel size at constant angular instantaneous field of view

where h is altitude. Its dimension across the scan line is p sec θ . For small values
of θ these effects are negligible. For example, for Landsat 7 the largest value of θ

is approximately 7.5◦ so that pθ = 1.02 p. However for systems with larger fields
of view, such as MODIS and aircraft scanners, the effect can be quite severe. For
an aircraft scanner with FOV = 80◦ the distortion in pixel size along the scan line
is pθ = 1.70 p – i.e. the region on the ground measured at the extremities of the
scan is 70% larger laterally than the region sensed at nadir. When the image data is
arranged to form an image, as in Fig. 2.5, the pixels are all written as the same size
spots on a photographic emulsion or are displayed as the same pixel size on a colour
display device. Therefore the displayed pixels are equal across the scan line whereas
the equivalent ground areas covered are not. This gives a compression of the image
data towards its edges.

There is a second distortion introduced with wide field of view systems and that
relates to pixel positions across the scan line. The scanner records pixels at constant
angular increments and these are displayed on a grid of uniform centres, as in Fig. 2.5.
However the spacings of the effective pixels on the ground increase with scan angle.
For example if the pixels are recorded at an angular separation equal to the IFOV
of the sensor then at nadir the pixels centres are spaced p apart. At a scan angle θ
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Fig. 2.8. Illustration of the along scan line compression evident in constant angular IFOV and
constant angular scan rate sensors. This leads to so-called S-bend distortion, as shown

the pixel centres will be spaced p sec2 θ apart as can be ascertained from Fig. 2.7.
Thus by placing the pixels on a uniform display grid the image will suffer an across
track compression. Again the effect for small angular field of view systems will be
negligible in terms of the relative spacings of adjacent pixels. However when the
effect is compounded to determine the location of a pixel at the swath edge relative
to nadir the error can be significant. This can be determined by computing the arc
SN in Fig. 2.7 S being the position to which the pixel at T would appear to be
moved if the data is arrayed uniformly. It can be shown readily that SN/T N =
θ/ tan θ this being the degree of across track scale distortion. In the case of Landsat 7
(θ/ tan θ)max = 0.9936. This indicates that a pixel at the swath edge (92.5 km from
the sub-nadir point) will be 314 m out of position along the scan line compared with
the ground if the pixel at nadir is in its correct location.

These panoramic effects lead to an interesting distortion in the geometry of large
field of view systems. To see this consider the uniform mesh shown in Fig. 2.8a.
Suppose this represents a region on the ground being imaged. For simplicity the
cells in the grid could be considered to be features on the ground. Because of the
compression in the image data caused by displaying equal-sized pixels on a uniform
grid as discussed in the foregoing, the uniform mesh will appear as shown in Fig. 2.8b.
Image pixels are recorded with a constant IFOV and at a constant angular sampling
rate. The number of pixels recorded therefore over the outer grid cells in the along
scan direction will be smaller than over those near nadir. In the along track direction
there is no variation of pixel spacing or density with scan angle as this is established
by the forward motion of the platform. Rather pixels near the swath edges will contain
information in common owing to the overlapping IFOV.

Linear features such as roads at an angle to the scan direction as shown in Fig. 2.8
will appear bent in the displayed image data because of the along scan compression
effect. Owing to the change in shape caused, the distortion is frequently referred to as
S-bend distortion and can be a common problem with aircraft line scanners. Clearly,
not only linear features are affected; rather the whole image detail near the swath
edges is distorted in this manner.
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2.3.3
Earth Curvature

Aircraft scanning systems, because of their low altitude (and thus the small absolute
swath width of their image data), are not affected by earth curvature. Neither are
space systems such as Landsat and SPOT, again because of the narrowness of their
swaths. However wide swath width spaceborne imaging systems are affected. For
MODIS with a swath width of 2330 km and an altitude of 705 km it can be shown
that the deviation of the earth’s surface from a plane amounts to less than 1% over the
swath, which seems insignificant. However it is the inclination of the earth’s surface
over the swath that causes the greater effect. At the edges of the swath the area of
the earth’s surface viewed at a given angular IFOV is larger than if the curvature of
the earth is ignored. The increase in pixel size can be computed by reference to the
geometry of Fig. 2.9. The pixel dimension in the across track direction normal to
the direction of the sensor is β[h + re(1 − cos φ)] secθ as shown. The geometry of
Fig. 2.9 then shows that the effective pixel size on the inclined earth’s surface is

pc = β[h + re(1 − cos φ)] secθ sec(θ + φ) (2.7b)

where βh is the pixel size at nadir and φ is the angle subtended at the centre of the
earth. Note that this expression reduces to (2.7a) if φ = 0 – i.e. if earth curvature

Fig. 2.9. Effect of earth curvature on the size of a pixel in the scan direction (across track)
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is considered negligible. Using the NOAA satellite as an example θ = 54◦ at the
edge of the swath and φ = 12◦. This shows that the effective pixel size in the along
scan direction is 2.89 times larger than that at nadir when earth curvature is ignored,
but is 4.94 times that at nadir when the effect of earth curvature is included. This
demonstrates that earth curvature introduces a significant additional compressive
distortion in the image data acquired by satellites such as NOAA when an image is
constructed on a uniform grid such as that in Fig. 2.5. The effect of earth curvature
in the along track direction is negligible.

2.3.4
Scan Time Skew

Mechanical line scanners such as the Landsat MSS and TM require a finite time to
scan across the swath. During this time the satellite is moving forward leading to a
skewing in the along track direction. As an illustration of the magnitude of the effect,
the time require to record one MSS scan line of data is 33 ms. During this time the
satellite travels forward by 213 m at its equivalent ground velocity of 6.467 km s−1.
As a result the end of the scan line is advanced by this amount compared with its
start.

2.3.5
Variations in Platform Altitude, Velocity and Attitude

Variations in the elevation or altitude of a remote sensing platform lead to a scale
change at constant angular IFOV and field of view; the effect is illustrated in Fig. 2.10a
for an increase in altitude with travel at a rate that is slow compared with a frame
acquisition time. Similarly, if the platform forward velocity changes, a scale change
occurs in the along track direction. This is depicted in Fig. 2.10b again for a change
that occurs slowly. For a satellite platform, orbit velocity variations can result from
orbit eccentricity and the non-sphericity of the earth.

Platform attitude changes can be resolved into yaw, pitch and roll during forward
travel. These lead to image rotation, along track and across track displacement as
noted in Fig. 2.10 c–e.

While these variations can be described mathematically, at least in principle, a
knowledge of the platform ephemeris is required to enable their magnitudes to be
computed. In the case of satellite platforms ephemeris information is often teleme-
tered to ground receiving stations. This can be used to apply corrections before the
data is distributed.

Attitude variations in aircraft remote sensing systems can potentially be quite
significant owing to the effects of atmospheric turbulence. These can occur over a
short time, leading to localised distortions in aircraft scanner images. Frequently
aircraft roll is compensated for in the data stream. This is made possible by having
a data window that defines the swath width; this is made smaller than the complete
scan of data over the sensor field of view. A gyro mounted on the sensor is then used
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Fig. 2.10. Effect of platform position and attitude errors on the region of earth being imaged,
when those errors occur slowly compared with image acquisition

to move the position of the data window along the total scan line as the aircraft rolls.
Pitch and yaw are generally not corrected unless the sensor is mounted on a three
axis stabilized platform.

A comprehensive discussion of the nature and effects of aircraft scanner distortion
is given by Silva (1978).

2.3.6
Aspect Ratio Distortion

The aspect ratio of an image (that is, its scale vertically compared with its scale
horizontally) can be distorted by mechanisms that lead to overlapping IFOV’s. The
most notable example of this occurs with the Landsat multispectral scanner. As
discussed in Sect. A.1.2 samples are taken across a scan line too quickly compared
with the IFOV. This leads to pixels having 56 metre centres but sampled with an
IFOV of 79 m. Consequently the effective pixel size is 79 m × 56 m and thus
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is not square. As a result if the pixels recorded by the multispectral scanner are
displayed on the square grid of Fig. 2.5 the image will be too wide for its height when
related to the corresponding region on the ground. The magnitude of the distortion
is 79/56 = 1.411 so that this is quite a severe error and must be corrected for most
applications.

A similar distortion can occur with aircraft scanners if the velocity of the aircraft is
not matched to the scanning rate of the sensor. Either underscanning or overscanning
can occur leading to distortion in the alongtrack scale of the image.

2.3.7
Sensor Scan Nonlinearities

Line scanners that make use of rotating mirrors, such as the NOAA AVHRR and
aircraft scanners, have a scan rate across the swath that is constant, to the extent that
the scan motor speed is constant. Systems that use an oscillating mirror however,
such as the Landsat thematic mapper, incur some nonlinearity in scanning near the
swath edges owing to the need for the mirror to slow down and change directions.
This effect is depicted in Fig. 2.11. According to Anuta (1973) this can lead to a
maximum displacement in pixel position compared with a perfectly linear scan of
about 395 m, for example, for Landsat multispectral scanner products.

Fig. 2.11. Mirror displacement versus time in an oscillating mirror scanner system. Note that
data acquisition does not continue to the extremes of the scan so that major nonlinearities are
obviated
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2.4
Correction of Geometric Distortion

There are two techniques that can be used to correct the various types of geometric
distortion present in digital image data. One is to model the nature and magnitude of
the sources of distortion and use these models to establish correction formulae. This
technique is effective when the types of distortion are well characterized, such as that
caused by earth rotation. The second approach depends upon establishing mathemat-
ical relationships between the addresses of pixels in an image and the corresponding
coordinates of those points on the ground (via a map). These relationships can be
used to correct the image geometry irrespective of the analyst’s knowledge of the
source and type of distortion. This procedure will be treated first since it is the most
commonly used and, as a technique, is independent of the platform used for data
acquisition. Correction by mathematical modelling is discussed later. Before pro-
ceeding it should be noted that each band of image data has to be corrected. However
since it can often be assumed that the bands are well registered to each other, steps
taken to correct one band in an image, can be used on all remaining bands.

2.4.1
Use of Mapping Polynomials for Image Correction

An assumption that is made in this procedure is that there is available a map of the
region corresponding to the image, that is correct geometrically. We then define two
cartesian coordinate systems as shown in Fig. 2.12. One describes the location of
points in the map (x, y) and the other coordinate system defines the location of pixels
in the image (u, v). Now suppose that the two coordinate systems can be related via
a pair of mapping functions f and g so that

u = f (x, y) (2.8a)

v = g(x, y) (2.8b)

Fig. 2.12. Coordinate systems defined for the image and map, along with the specification of
ground control points
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If these functions are known then we could locate a point in the image knowing its
position on the map. In principle, the reverse is also true. With this ability we could
build up a geometrically correct version of the image in the following manner. First we
define a grid over the map to act as the grid of pixel centres in the corrected image.
This grid is parallel to, or indeed could in fact be, the map coordinate grid itself,
described by latitudes and longitudes, UTM coordinates and so on. For simplicity
we will refer to this grid as the display grid; by definition this is geometrically correct.
We then move over the display grid pixel centre by pixel centre and use the mapping
functions above to find the corresponding pixel in the image for each display grid
position. Those pixels are then placed on the display grid. At the conclusion of the
process we have a geometrically correct image built up on the display grid utilizing
the original image as a source of pixels.

While the process is a straightforward one there are some practical difficulties that
must be addressed. First we do not know the explicit form of the mapping functions
of (2.8). Secondly, even if we did, they may not point exactly to a pixel in the image
corresponding to a display grid location; instead some form of interpolation may be
required.

2.4.1.1
Mapping Polynomials and Ground Control Points

Since explicit forms for the mapping functions in (2.8) are not known they are
generally chosen as simple polynomials of first, second or third degree. For example,
in the case of second degree (or order)

u=a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 (2.9a)

v =b0 + b1x + b2y + b3xy + b4x
2 + b5y

2 (2.9b)

Sometimes orders higher than three are used but care must be taken to avoid the
introduction of worse errors than those to be corrected, as will be noted later.

If the coefficients ai and bi in (2.9) were known then the mapping polynomials
could be used to relate any point in the map to its corresponding point in the image as in
the foregoing discussion. At present however these coefficients are unknown. Values
can be estimated by identifying sets of features on the map that can also be identified
on the image. These features, often referred to as ground control points (G.C.P’s),
are well-defined and spatially small and could be road intersections, airport runway
intersections, bends in rivers, prominent coastline features and the like. Enough of
these are chosen (as pairs – on the map and image as depicted in Fig. 2.12) so
that the polynomial coefficients can be estimated by substitution into the mapping
polynomials to yield sets of equations in those unknowns. Equations (2.9) show
that the minimum number required for second order polynomial mapping is six.
Likewise a minimum of three is required for first order mapping and ten for third
order mapping. In practice however significantly more than these are chosen and the
coefficients are evaluated using least squares estimation. In this manner any control
points that contain significant positional errors either on the map or in the image will
not have an undue influence on the polynomial coefficients.
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2.4.1.2
Resampling

Having determined the mapping polynomials explicitly by use of the ground control
points the next step is to find points in the image corresponding to each location in
the pixel grid previously defined over the map. The spacing of that grid is chosen
according to the pixel size required in the corrected image and need not be the same
as that in the original geometrically distorted version. For the moment suppose that
the points located in the image correspond exactly to image pixel centres. Then those
pixels are simply transferred to the appropriate locations on the display grid to build
up the rectified image. This is the case in Fig. 2.13.

Fig. 2.13. Use of the mapping polynomials to locate points in the image corresponding to
display grid positions

2.4.1.3
Interpolation

As is to be expected, grid centres from the map-registered pixel grid will not usually
project to exact pixel centre locations in the image, as shown in Fig. 2.13, and some
decision has to be made therefore about what pixel brightness value should be chosen
for placement on the new grid. Three techniques can be used for this purpose.

Nearest neighbour resampling simply chooses the actual pixel that has its centre
nearest the point located in the image, as depicted in Fig. 2.14a. This pixel is then
transferred to the corresponding display grid location. This is the preferred tech-
nique if the new image is to be classified since it then consists of the original pixel
brightnesses, simply rearranged in position to give a correct image geometry.

Bilinear interpolation uses three linear interpolations over the four pixels that
surround the point found in the image corresponding to a given display grid position.
The process is illustrated in Fig. 2.14b. Two linear interpolations are performed along
the scan lines to find the interpolants φ(i, j + j ′) and φ(i + 1, j + j ′) as shown.
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Fig. 2.14. Determining a display grid pixel brightness by a nearest neighbour resampling, b
bilinear interpolation and c cubic convolution interpolation; i, j etc. are discrete values of u

and v

These are given by

φ(i, j + j ′) = j ′φ(i, j + 1) + (1 − j ′)φ(i, j)

φ(i + 1, j + j ′) = j ′φ(i + 1, j + 1) + (1 − j ′)φ(i + 1, j)

where φ is pixel brightness and (i+ i′, j +j ′) is the position at which an interpolated
value for brightness is required. The position is measured with respect to (i, j) and
assumes a grid spacing of unity in both directions. The final step is to interpolate
linearly over φ(i, j + j ′) and φ(i + 1, j + j ′) to give
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φ(i + i′, j + j ′)= (1 − i′){j ′φ(i, j + 1) + (1 − j ′)φ(i, j)}
+i′{j ′φ(i + 1, j + 1) + (1 − j ′)φ(i + 1, j)} (2.10)

Cubic convolution interpolation uses the surrounding sixteen pixels. Cubic polyno-
mials are fitted along the four lines of four pixels surrounding the point in the image,
as depicted in Fig. 2.14c to form four interpolants. A fifth cubic polynomial is then
fitted through these to synthesise a brightness value for the corresponding location
in the display grid.

The actual form of polynomial that is used for the interpolation is derived from
considerations in sampling theory and issues concerned with constructing a contin-
uous function (i.e. interpolating) from a set of samples. These are beyond the scope
of this treatment but can be appreciated using the material presented in Chap. 7. An
excellent treatment of the problem has been given by Shlien (1979), who discusses
several possible cubic polynomials that could be used for the interpolation process
and who also demonstrates that the interpolation is a convolution operation. Based
on the choice of a suitable polynomial (attributable to Simon (1975)) the algorithm
that is used to perform cubic convolution interpolation is (Moik, 1980):

φ(i, j + 1 + j ′)= j ′{j ′(j ′[φ(i, j + 3) − φ(i, j + 2) + φ(i, j + 1) − φ(i, j)]
+[φ(i, j + 2) − φ(i, j + 3) − 2φ(i, j + 1) + 2φ(i, j)])
+[φ(i, j + 2) − φ(i, j)]}
+φ(i, j + 1) (2.11a)

This expression is evaluated for each of the four lines of four pixels depicted in
Fig. 2.14c to yield the four interpolants φ(i, j + 1 + j ′), φ(i + 1, j + 1 + j ′),
φ(i + 2, j + 1 + j ′), φ(i + 3, j + 1 + j ′). These are then interpolated vertically
according to

φ(i + 1 + i′, j + 1 + j ′)= i′{i′(i′[φ(i + 3, j + 1 + j ′) − φ(i + 2, j + 1 + j ′)
+φ(i + 1, j + 1 + j ′) − φ(i, j + 1 + j ′)]
+[φ(i + 2, j + 1 + j ′) − φ(i + 3, j + 1 + j ′)
−2φ(i + 1, j + 1 + j ′) + 2φ(i, j + 1 + j ′)])
+[φ(i + 2, j + 1 + j ′) − φ(i, j + 1 + j ′)]}
+φ(i + 1, j + 1 + j ′) (2.11b)

Cubic convolution interpolation, or resampling, yields an image product that is gen-
erally smooth in appearance and is often used if the final product is to be treated by
photointerpretation. However since it gives pixels on the display grid, with bright-
nesses that are interpolated from the original data, it is not recommended if classi-
fication is to follow since the new brightness values may be slightly different to the
actual radiance values detected by the satellite sensors.
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2.4.1.4
Choice of Control Points

Enough well defined control point pairs must be chosen in rectifying an image to
ensure that accurate mapping polynomials are generated. However care must also be
given to the locations of the points.A general rule is that there should be a distribution
of control points around the edges of the image to be corrected with a scattering of
points over the body of the image. This is necessary to ensure that the mapping
polynomials are well-behaved over the image. This concept can be illustrated by
considering an example from curve fitting.While the nature of the problem is different
the undesirable effects that can be generated are similar. In Fig. 2.15 is illustrated a
set of data points in a graph through which first order (linear), second order and third
order curves are depicted. Note that as the order is higher the curves pass closer to
the points. However if it is presumed that the data would have continued for larger
values of x with much the same trend as apparent in the points plotted then clearly
the linear fit will extrapolate moderately acceptably. In contrast the cubic curve can
deviate markedly from the trend when used as an extrapolator. This is essentially true
in geometric correction of image data: while the higher order polynomials will be
accurate in the vicinity of the control points themselves, they can lead to significant
errors, and thus image distortions, for regions of images outside the range of the
control points. This is illustrated in the example of Sect. 2.5.4.

Fig. 2.15. Illustration from curve fitting to reinforce the potentially poor behaviour of high
order mathematical functions when used to extrapolate

2.4.1.5
Example of Registration to a Map Grid

To illustrate the above techniques a small segment of a Landsat MSS image of Sydney,
Australia was registered to a map of the region.
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Table 2.1. Control points used in image to map registration example

It is important that the map has a scale not too different from the scale at which
the image data is considered useful. Otherwise the control point pairs may be difficult
to establish. In this case a map at 1 : 250,000 scale was used. The relevant segment
is shown reproduced in Fig. 2.16, along with the portion of image to be registered.
Comparison of the two reveals the geometric distortion of the image. Eleven control
points were chosen for the registration, with the coordinates shown in Table 2.1.
Their UTM map coordinates were specified in this exercise by placing the map on a
digitizing table, although they could have been read from the map and entered man-
ually. The former method is substantially more convenient and often more accurate
if the digitizing table facility is available.

Using the set of control points, second degree mapping polynomials were gen-
erated. To test the effectiveness of these in transferring pixels from the raw image
grid to the map display grid, the software system that was used in the exercise (Dipix
Systems Ltd R-STREAM) computes the UTM coordinates of the control points from
their pixel coordinates in the image. These are compared with the actual UTM co-
ordinates and the differences (residuals) calculated in both directions. A root mean
square of all the residuals is then computed in both directions (easting and northing)
as shown in Table 2.1, giving an overall impression of the accuracy of the mapping
process. In this case the set of control points is seen to lead to an average positional
error of 56 m in easting and 63 m in northing, which is smaller than a pixel size
in equivalent ground metres and thus would be considered acceptable. At this stage
the table can be inspected to see if any individual control point has residuals that
are unacceptably high. It could be assumed that this is a result of poor placement;
if so it could be re-entered and the polynomial recalculated. If changing that control
point leaves the residuals unchanged it may be that there is local distortion in that
particular region of the image. A choice has to be made then as to whether the control
point should be used to give a degree of correction there, that might also influence
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Fig. 2.16. a Map and
b Landsat MSS im-
age segment to be
registered. The result
obtained from second
order mapping polyno-
mials is shown in c
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the remainder of the image, or whether it should be removed and leave that region
in error.

In this example cubic convolution resampling was used in producing an image
on a 50 m grid by means of the pair of second order mapping polynomials. The result
is shown in Fig. 2.16.

2.4.2
Mathematical Modelling

If a particular distortion in image geometry can be represented mathematically then
the mapping functions in (2.8) can be specified explicitly. This obviates the need to
choose arbitary polynomials as in (2.9) and to use control points to determine the
polynomial coefficients. In this section some of the more common distortions are
treated from this point of view. However rather than commence with expressions
that relate image coordinates (u, v) to map coordinates (x, y) it is probably simpler
conceptually to start the other way around, i.e. to model what the true (map) positions
of pixels should be given their positions in an image. This expression can then be
inverted if required to allow the image to be resampled on to the map grid.

2.4.2.1
Aspect Ratio Correction

The easiest source of distortion to model is that caused by the 56 m equivalent ground
spacing of the 79 m × 79 m equivalent pixels in the Landsat multispectral scanner.
As noted in Sect. 2.3.6 this leads to an image that is too wide for its height by a factor
of 79/56 = 1.411. Consequently to produce a geometrically correct image either the
vertical dimension has to be expanded by this amount or the horizontal dimension
must be compressed. We will consider the former. This requires that the pixel axis
horizontally be left unchanged (i.e. x = u), but that the axis vertically be scaled (i.e.
y = 1.411 v). This can be expressed conveniently in matrix notation as[

x

y

]
=
[

1 0
0 1.411

] [
u

v

]
. (2.12)

One way of implementing this correction would be to add extra lines of pixel data to
expand the vertical scale. This could be done by duplicating four lines in every ten.
Alternatively, and more precisely, (2.12) can be inverted to give[

u

v

]
=
[

1 0
0 0.709

] [
x

y

]
. (2.13)

Thus, as with the techniques of the previous section, a display grid is defined over the
map (with coordinates (x, y)) and (2.13) is used to find the corresponding location
in the image (u, v). The interpolation techniques of Sect. 2.4.1.3 are then used to
generate brightness values for the display grid pixels.
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2.4.2.2
Earth Rotation Skew Correction

To correct for the effect of earth rotation it is necessary to implement a shift of pixels
to the left that is dependent upon the particular line of pixels, measured with respect
to the top of the image. Their line addresses as such (v) are not affected. Using the
results of Sect. 2.3.1, these corrections are implemented by[

x

y

]
=
[

1 α

0 1

] [
u

v

]

with α = −0.056 for Sydney, Australia. Again this can be implemented in an ap-
proximate sense by making one pixel shift to the left every 17 lines of image data
measured down from the top, or alternatively the expression can be inverted to give[

u

v

]
=
[

1 −α

0 1

] [
x

y

]
=
[

1 0.056
0 1

] [
x

y

]
(2.14)

which again is used with interpolation procedures from Sect. 2.4.1.3 to generate
display grid pixels.

2.4.2.3
Image Orientation to North-South

Although not strictly a geometric distortion it is an inconvenience to have an image
that is corrected for most major effects but is not oriented vertically in a north-
south direction. It will be recalled for example that the Landsat orbits in particular
are inclined to the north-south line by about 9◦. (This of course is different with
different latitudes). To rotate an image by an angle ζ in the counter -or anticlockwise
direction (as required in the case of Landsat) it is easily shown that (Foley, Van Dam,
Feiner and Hughes, 1990)[

x

y

]
=
[

cos ζ sin ζ

− sin ζ cos ζ

] [
u

v

]
so that [

u

v

]
=
[

cos ζ − sin ζ

sin ζ cos ζ

] [
x

y

]
. (2.15)

2.4.2.4
Correction of Panoramic Effects

The discussion in Sect. 2.3.2 makes note of the pixel positional error that results from
scanning with a fixed IFOV at a constant angular rate. In terms of map and image
coordinates, the distortion can be described by[

x

y

]
=
[

tan θ/θ 0
0 1

] [
u

v

]
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where θ is the instantaneous scan angle, which in turn can be related to x or u, viz.
x = h tan θ , u = hθ , where h is altitude. Consequently resampling can be carried
out according to[

u

v

]
=
[

θ cot θ 0
0 1

] [
x

y

]
=
[

h/x tan−1(x/h) 0
0 1

] [
x

y

]
. (2.16)

2.4.2.5
Combining the Corrections

Clearly any exercise in image correction usually requires several distortions to be
rectified. Using the techniques in Sect. 2.4.1 it is assumed that all sources are rectified
simultaneously. When employing mathematical modelling, a correction matrix has
to be devised for each source considered important, as in the preceding sub-sections,
and the set of matrices combined. For example if the aspect ratio of a Landsat TM
image is corrected first, followed by correction of the effect of earth rotation, then
the following single linear transformation can be established for resampling.[

x

y

]
=
[

1 α

0 1

] [
1 0
0 1.411

] [
u

v

]

=
[

1 1.411α

0 1.411

] [
u

v

]

which for α = −0.056 (at Sydney) gives[
u

v

]
=
[

1 0.056
0 0.709

] [
x

y

]
.

2.5
Image Registration

2.5.1
Georeferencing and Geocoding

Using the correction techniques of the preceding sections an image can be registered
to a map coordinate system and therefore have its pixels addressable in terms of
map coordinates (eastings and northings, or latitudes and longitudes) rather than
pixel and line numbers. Other spatial data types, such as geophysical measurements,
image data from other sensors and the like, can be registered similarly to the map thus
creating a georeferenced integrated spatial data base of the type used in a geographic
information system.

Expressing image pixel addresses in terms of a map coordinate base is often
referred to as geocoding.
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2.5.2
Image to Image Registration

Many applications of remote sensing image data require two or more scenes of the
same geographical region, acquired at different dates, to be processed together. Such
a situation arises for example when changes are of interest, in which case registered
images allow a pixel by pixel comparison to be made.

Two images can be registered to each other by registering each to a map coordinate
base separately, in the manner demonstrated in the previous section.Alternatively, and
particularly if georeferencing is not important, one image can be chosen as a master
to which the other, known as the slave, is to be registered. Again the techniques of
Sect. 2.4 are used, however the coordinates (x, y) are now the pixel coordinates in the
master image rather than the map coordinates. As before (u, v) are the coordinates of
the image to be registered (i.e. the slave).An advantage in image to image registration
is that only one registration step is required in comparison to two if both are taken
back to a map base. Furthermore an artifice known as a sequential similarity detection
algorithm can be used to assist in accurate co-location of control point pairs.

2.5.3
Control Point Localisation by Correlation

Correlation is of value in locating the position of a control point in the master image
having identified it in the slave.The sequential similarity detection algorithm (SSDA),
as treated by Bernstein (1983), is of this type. Only one specific implementation is
considered here to illustrate the nature of the method. Other methods are summarized
by Yao (2001).

Suppose a control point has been chosen in the slave image and it is necessary to
determine its counterpart in the master image. In principle a rectangular sample of
pixels surrounding the control point in the slave image can be extracted as a window
to be correlated with the master image. Because of the spatial properties of the pair of
images near the control points a high correlation should occur when the slave window
is located over its exact counterpart region in the master, and thus the master location
of the control point is identified. Obviously it is not necessary to move the slave
window over the complete master image since the user knows approximately where
the control point should occur in the master. Consequently it is only necessary to
specify a search region in the neighbourhood of the approximate location. Software
systems that provide this option allow the user to choose both the size of the window
of pixels from the slave image control point neighbourhood and the size of the search
region in the master image over which the window of slave pixels is moved to detect
an acceptable correlation.

The correlation measure used need not be sophisticated. Indeed a simple simi-
larity check that can be used is to compute the sum of the absolute differences of
the slave and master image pixel brightnesses over the window, for each possible
location of the window in the search region. The location that gives the smallest ab-
solute difference defines the control point position as that pixel at the current centre
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of the window. Obviously the sensitivity of the method will be reduced if there is a
large average difference in brightness between the two images – such as that owing
to seasonal variations. A refinement therefore is to compute the summed absolute
difference of the pixel brightnesses relative to their respective means in the search
window.

Clearly the use of techniques such as these to locate control points depends upon
there not being major changes of an uncorrelated nature between the scenes in the
vicinity of a control point being tested. For example a vegetation flush due to rainfall
in part of the search window can lead to an erroneous location. Nevertheless with
a judicious choice of window size and search region, measures such as SSDA can
give very effective guidance to the user, especially when available on an interactive
image processing facility.

2.5.4
Example of Image to Image Registration

To illustrate image to image registration, but more particularly to see clearly the effect
of control point distribution and the significance of the order of the mapping polyno-
mials to be used for registration, two segments of Landsat MSS infrared image data
in the northern suburbs of Sydney were chosen. One was acquired on December 29,
1979 and was used as the master. The other was acquired on December 14, 1980 and
was used as the slave image. These are shown in Fig. 2.17 wherein careful inspection
shows the differences in image geometry.

Two sets of control points were chosen. In one the points were distributed as nearly
as possible in a uniform manner around the edge of the image segment as shown in
Fig. 2.17a, with some points located across the centre of the image. This set would
be expected to give a reasonable registration of the images. The second set of control
points was chosen injudiciously, closely grouped around one particular region, to
illustrate the resampling errors that can occur. These are shown in Fig. 2.17b. In
both cases the control point pairs were co-located with the assistance of a sequential
similarity detection algorithm. This worked well particularly for those control points
around the coastal and river regions where the similarity between the images is
unmistakable. To minimise tidal influences on the location of control points, those
on water boundaries were chosen as near as possible to be on headlands, and certainly
were never chosen at the ends of inlets.

For both sets of control points third degree mapping polynomials were used
along with cubic convolution resampling. As expected the first set of points led to an
acceptable registration of the images whereas the second set gave a good registration
in the immediate neighbourhood of the points but beyond them produced gross
distortion.

The adequacy of the registration process can be assessed visually if the master
and resampled slave images can be superimposed in different colours. Figure 2.18a
and 2.18b show the master image in red with the resampled slave image superimposed
in green. Where good registration has been achieved the resultant is yellow (with the
exception of regions of gross dissimilarity in pixel brightness – in this case associated
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Fig. 2.17. Control points used in image to image registration example. a Good distribution;
b Poor distribution

with fire burns). However misregistration shows quite graphically by a red-green
separation. This is particularly noticeable in Fig. 2.18b where the poor extrapolation
obtained with third order mapping is demonstrated.

The exercise using the poor set of control points (Fig. 2.17b) was repeated.
However this time only first order mapping polynomials were used. While these
obviously will not remove non-linear differences between the images and will give
poorer matches at the control points themselves, they are well behaved in extrapola-
tion beyond the vicinity of the control points and lead to an acceptable registration
as shown in Fig. 2.18c.

2.6
Miscellaneous Image Geometry Operations

While the techniques of Sects. 2.4 and 2.5 have been devised for treating errors in
image geometry and for registering sets of images, and images to maps, they can be
exploited also for performing intentional changes to image geometry. Image rotation
and scale changing are chosen here as illustrations.
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Fig. 2.18. a Registration
of 1980 image (green)
with 1979 image (red)
using the control points
of Fig. 2.17a, with third
order mapping polynomi-
als; b Third order mapping
of 1980 image (green)
to 1979 image (red) us-
ing the control points of
Fig. 2.17b; c As for b but
using first order mapping
polynomials
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2.6.1
Image Rotation

Rotation of image data by an angle about the pixel grid can be useful for a number
of applications. Most often it is used to align the pixel grid, and thus the image, to
a north- south orientation as treated in Sect. 2.4.2.3. However the transformation in
(2.15) is perfectly general and can be used to rotate any image in an anticlockwise
sense by any specified angle ζ .

2.6.2
Scale Changing and Zooming

The scales of an image in both the vertical and horizontal directions can be altered
by the transformation.[

x

y

]
=
[

a 0
0 b

] [
u

v

]
where a and b are the desired scaling factors. To resample the scaled image onto the
display grid we use the inverse operation, as before, to locate pixel positions in the
original image corresponding to each display grid position, viz[

u

v

]
=
[

1/a 0
0 1/b

] [
x

y

]
.

Again interpolation is used to establish actual pixel brightnesses to use, since u, v

will not normally fall on exact grid locations.
Frequently a = b so that the image is simply magnified (although different

magnification factors could be used in each direction if desired). This is often called
zooming, particularly if the process is implemented in an image display system. If
the nearest neighbour interpolation procedure is used in the resampling process the
zoom implemented is said to occur by pixel replication and the image will look
progressively blocky for larger zoom factors. If cubic convolution interpolation is
used there will be a change in magnification but the image will not take on the blockly
appearance. Often this process is called interpolative zoom. Both pixel replication
zoom and interpolative zoom can also be implemented in hardware to allow the
process to be performed in real time.

References for Chapter 2

Good discussions on the effect of the atmosphere on image data in the visible and infrared
wavelength ranges will be found in Slater (1980) and Forster (1984). Forster gives a detailed set
of calculations to illustrate how correction procedures for compensating radiometric distortion
caused by the atmosphere are applied. Definitions and derivations of radiometric quantities
are covered comprehensively by Slater.

Extensive treatments of geometric distortion and means for geometric correction are cov-
ered by Anuta (1973), Billingsley (1983) and Bernstein (1983). Discussions of resampling
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Problems

2.1 (a) Consider a (hypothetical) region on the ground consisting of a square grid. For sim-
plicity suppose the grid “lines" are 79 m in width and the grid spacing is 790 m. Sketch
how the region would appear in Landsat multispectral scanner imagery, before any geometric
correction has been applied. Include only the effect of earth rotation and the effect of 56 m
horizontal spacing of the 79 m × 79 m ground resolution elements.

(b) Develop a pair of linear (first order) mapping polynomials that will correct the image
data of part (a). Assume the “lines" on the ground have a brightness of 100 and the background
brightness is 20. Resample onto a 50 m grid and use a nearest neighbour interpolation.You will
not want to compute all the resampled pixels unless a small computer program is used for the
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purpose. Instead you may wish simply to consider some significant pixels in the resampling
to illustrate the accuracy of the geometric correction.

2.2 A sample of pixels from each of three cover types present in the Landsat MSS scene of
Sydney,Australia, acquired on 14 December, 1980 is given in Table 2.2a. Only the brightnesses
(digital count values) in the visible red band (0.6 to 0.7 µm) and the second of the infrared
bands (0.8 to 1.11 µm) are given.

For this image Forster (1984) has computed the following relations between reflectance
(R) and the digital count values (C) measured in the image data, where the subscript 7 refers
to the infrared data and the subscript 5 refers to the visible red data:

R5 = 0.44 C5 + 0.5

R7 = 1.18 C7 + 0.9 .

Table 2.2b shows sampIes of MSS digital count values for Sydney acquired on 8 June
1980. For this scene, Forster has determined

Table 2.2. Pixels from three cover types in wavelength bands 5 (0.6 to 0.7 µm) and 7 (0.8 to
1.1 µm) (on a scale of 0 to 255)

(a) Landsat MSS image of Sydney, 14 December 1980
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R5 = 3.64 C5 − 1.6

R7 = 1.52 C7 − 2.6 .

Compute mean values of the digital count values for each cover type in each scene and
plot these (along with bars that indicate standard deviation) in a multispectral space. This has
two axes; one is the pixel digital value in the infrared band and the other is the value in the
visible red band.

Instead of plotting the mean and standard deviations of the digital count values, convert
the data to reflectances first. Comment on the effect correction of the raw digital count values
to reflectance data (in which atmospheric effects have been removed) has on the apparent
spectral separation of the three cover types.

2.3 Aircraft line scanners acquire image data using a mirror that sweeps out lines of data at
right angles to the fuselage axis. In the absence of a cross wind, scanning therefore will be
orthogonal to the aircraft ground track, as is the case for satellite scanning. However aircraft
data is frequently recorded in the presence of a cross wind. The aircraft fuselage then maintains
an angle to the ground track so that scanning is no longer orthogonal to the effective forward
motion. Discuss the nature of the distortion, referred to as “crabbing", that this causes in the
image data as displayed on a rectangular grid. Remember to take account also of the finite
scan time across a line.

Push broom scanners, employing linear arrays of charge coupled device sensors, are also
used on aircraft. What is the nature of the geometric distortion incurred with those devices in
the presence of a crosswind?

It is technically feasible to construct two dimensional detector arrays for use as aircraft
sensors, with which frames of images data would be recorded in a “snapshot fashion" much
like the Landsat RBV. What geometric distortion would be incurred with this device as a result
of a cross-wind?

2.4 Compute the skew distortion resulting from earth rotation in the case of Landsats 7, and
Spot.

2.5 For a particular application suppose it was necessary to apply geometric correction pro-
cedures to an image prior to classification. (See Chap. 3 for an overview of classification).
What interpolation technique would you see use in the resampling process? Why?

2.6 Destriping of Landsat multispectral scanner images is often performed by computing six
(modulo-6 line) histograms and then either (i) matching all six to a standard histogram or
(ii) choosing one of the six as a reference and matching the other five to it. Which method is
to be preferred if the image is to be analysed by photointerpretation or by classification (see
Chap. 3)?

2.7 In a particular problem you have to register five Landsat images to a map. Would you
register each image to the map separately, register one image to the map and then the other
four images to that one, or image 1 to the map, image 2 to image 1, image 3 to image 2 etc?

2.8 (Requires a background in digital signal processing and sampling theory).
Remote sensing digital images are simply two dimensional uniform samples of the ground
scene. In particular one line of image data is a regular sequence of samples. The spatial
frequency spectrum of the line data will therefore be periodic as depicted in Fig. 2.19; it is
assumed here there is no aliasing. From sampling theory it is well known that the original
data can be recovered by low pass filtering the spectrum, using the ideal filter as indicated in
the figure. Multiplication of the spectrum by this ideal filter is equivalent to convolving the
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Fig. 2.19. Spatial frequency spectrum of the line data

original line samples by the inverse Fourier transform of the filter function. From the theory
of the Fourier transform, the inverse of the filter function is

s(x) = 2d

π

sin x

x

with x = ζ/2d in which ζ is a spatial variable along lines of data, and d is the inter-pixel
spacing. This is known generally as an interpolating function. Determine some cubic polyno-
mial approximations to this function. These could be determined from a simple Taylor series
expansion or could be derived from cubic splines. For a set of examples see Shlien (1979).

2.9 A multispectral scanner has been designed for aircraft operation. It has a field of view
(FOV) of ±35◦ about nadir and an instantanteous field of view (IFOV) of 2 mrad. The sensor
is designed to operate at a flying height of 1000 m.

(i) Determine the pixel size, in metres, at nadir.
(ii) Determine the pixel size at the edge of a swath compared with that at nadir.
(iii) Discuss the nature of the distortion in the image geometry encountered if the pixels across

a scan line are displayed on uniform pixel centre.

2.10 Determine the maximum angle of the field of view for an airborne optical sensor with a
constant instantaneous field of view (IFOV), so that the pixel dimension along the scan line
at the extremes is less than 1.5 times that at nadir (ignore earth curvature effect).

2.11 Consider the panoramic along scan line distortion of an airborne optical remote sensing
system with a constant instantaneous field of view (IFOV); sketch the image formed for the
ground scene shown in Fig. 2.20, and explain why it appears as you have sketched it.

Fig. 2.20. Ground scene
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The Interpretation of Digital Image Data

3.1
Approaches to Interpretation

When image data is available in digital form, spatially quantised into pixels and
radiometrically quantised into discrete brightness levels, several approaches are pos-
sible in endeavouring to extract information. One involves the use of a computer
to examine each pixel in the image individually with a view to making judgement
about pixels specifically based upon their attributes. This is referred to as quantita-
tive analysis since pixels with like attributes are often counted to give area estimates.
Means for doing this are described in Sect. 3.4. Another approach involves a human
analyst/interpreter extracting information by visual inspection of an image composed
from the image data. In this he or she notes generally large scale features and is often
unaware of the spatial and radiometric digitisations of the data,. This is referred to
as photointerpretation or sometimes image interpretation; its success depends upon
the analyst exploiting effectively the spatial, spectral and temporal elements present
in the composed image product. Information spatially, for example, is present in the
qualities of shape, size, orientation and texture. Roads, coastlines and river systems,
fracture patterns, and lineaments generally, are usually readily identified by their
spatial disposition. Temporal data, such as the change in a particular object or cover
type in an image from one date to another can often be used by the photointerpreter
as, for example, in discriminating deciduous or ephemeral vegetation from perennial
types. Spectral clues are utilised in photointerpretation based upon the analyst’s fore-
knowledge of, and experience with, the spectral reflectance characteristics of typical
ground cover types, and how those characteristics are sampled by the sensor on the
satellite or aircraft used to acquire the image data.

Those two approaches to image interpretation have their own roles and often
these are complementary. Photointerpretation is aided substantially if a degree of
digital image processing is applied to the image data beforehand, while quantitative
analysis depends for its success on information provided at key stages by an analyst.
This information very often is drawn from photointerpretation.
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Table 3.1. A comparison of photointerpretation and quantitative analysis

A comparison of the attributes of photointerpretation and quantitative analysis
is given in Table 3.1. From this it can be concluded that photointerpretation, involv-
ing direct human interaction and therefore high level decisions, is good for spatial
assessment but poor in quantitative accuracy. Area estimates by photointerpretation,
for instance, would involve planimetric measurement of regions identified visually;
in this, boundary definition errors will prejudice area accuracy. By contrast, quan-
titative analysis, requiring little human interaction, has poor spatial ability but high
quantitative accuracy. Its high accuracy comes from the ability of a computer, if re-
quired, to process every pixel in a given image and to take account of the full range
of spectral, spatial and radiometric detail present. Its poor spatial properties come
from the relative difficulty with which decisions about shape, size, orientation and
texture can be made using standard sequential computing techniques.

In computer-based quantitative analysis the attributes of each pixel (such as the
spectral bands available) are examined in order to give the pixel a label identifying
it as belonging to a particular class of pixels of interest to the user. As a result, the
process is often also called classification. We will consider that process in a little
more detail shortly. In the particular case of hyperspectral data, because of the high
spectral definition available, pixel identification and thus classification is possible
using knowledge of the spectroscopic properties of earth surface materials. It is also
a quantitative approach because identification happens at the pixel level. Although
the knowledge of an expert analyst is used in performing the identification, most
often the spectrum of a pixel recorded by a hyperspectral sensor is identified by
comparing it against a data base of pre-recorded spectra (see Chap. 13).
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3.2
Forms of Imagery for Photointerpretation

Image data can be procured either in photographic form or in digital format. The
latter is more flexible since first, photographic products can be created from the
digital data and secondly, the data can be processed digitally for enhancement before
visual interpretation.

There are two fundamental types of display product. The first is a black and white
display of each band in the image data. If produced from the raw digital data then
black will correspond to a digital brightness value of 0 whereas white will correspond
to the highest digital value. This is usually 63, 127, 255 or 4095 (for 6 bit, 7 bit, 8 bit
and 12 bit data respectively).

The second display product is a colour composite in which selected features
or bands in multispectral data are chosen to be associated with the three additive
colour primaries in the display device which produces the colour product. When
the data consists of more than three features a judgement has to be made as to
how to discard all but three, or alternatively, a mapping has to be invented that will
allow all the features to be combined suitably into the three primaries. One possible
mapping is the principal components transformation developed in Chap. 6. Usually
this approach is not adopted since the three new features are synthetic and the analyst
is therefore not able to call upon experience of spectral reflectance characteristics.
Instead a subset of original bands is chosen to form the colour composite. When
the data available consists of a large number of bands (such as produced by aircraft
scanners or by imaging spectrometers) only experience, and the area of application,
tell which three bands should be combined into a colour product. For data with
limited spectral bands however the choice is more straightforward. An example of
this is Landsat multispectral scanner data. Of the available four bands, frequently
band 6 is simply discarded since it is highly correlated with band 7 for most cover
types and also is more highly correlated with bands 4 and 5 than is band 7. Bands 4,
5 and 7 are then associated with the colour primaries in the order of increasing
wavelength:

Landsat MSS Bands
4 (green)
5 (red)
7 (infrared)

→

increasing
wavelenth

Colour primaries
blue
green
red

An example of the colour product obtained by such a procedure is seen in Fig. 3.1.
This is often referred to as a false colour composite or sometimes in the past, by
association with colour infrared film, a colour infrared image. In this, vegetation
shows as variations in red (owing to the high infrared response associated with
vegetation), soils show as blue, green and sometimes yellow and water as black
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Fig. 3.1. Formation of a Landsat multispectral scanner false colour composite by displaying
the infrared band as red, the visible red band as green and the visible green band as blue

or deep blue. These colour associations are easily determined by reference to the
spectral reflectance characteristics of earth surface cover types in Sect. 1.1; it is
important also to take notice of the spectral imbalance created by computer en-
hancement of the brightness range in each wavelength band as discussed in Sect. 3.3
following.
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It is of interest to note that the correlation matrix for the image of Fig. 3.1 is

Band 4 Band 5 Band 6 Band 7
Band 4 1.00
Band 5 0.85 1.00
Band 6 0.31 0.39 1.00
Band 7 −0.09 −0.07 0.86 1.00

wherein the redundancy present in band 6 can be seen (see Sect. 6.1).
In many ways the choice of colour assignments for the Landsat multispectral

scanner bands is an unfortunate one since this yields, for most scenes, an image
product substantially composed of reds and blues. These are the hues in which the
human visual system is least sensitive to detail. Instead it would have been better to
form an image in which yellows and greens predominate since then many fine details
become more apparent. An illustration of this is given in Fig. 3.2.

This raises a more general point about the best use of colour image display.
Usually, when the bands are significantly correlated it is difficult to obtain richly
coloured images in which a full range of hues is present. In order to achieve good use
of the available colour space an image transformation is often required, such as the
principal components transform of Chap. 6. The discussion in Sect. 6.1.1 is relevant
in this regard.

Fig. 3.2. Standard Landsat multispectral scanner false colour composite a compared with a
product in which band 7 has been displayed as green, band 5 as red and band 4 as blue b. Finer
detail is more apparent in the second product owing to the sensitivity of the human vision
system to yellow-green hues. The image segment shown is Sydney, the capital of New South
Wales, Australia, acquired on December 14, 1980
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Colour composite products for other remote sensing image data sets are created,
similarly, by associating bands with display colour primaries usually in a wavelength
monotonic fashion.

3.3
Computer Processing for Photointerpretation

When image data is available in digital form it can be processed before an actual image
is produced in order to ensure that the clues used for photointerpretation are enhanced.
Little can be done about temporal clues, but judicious processing makes spectral and
spatial data more meaningful. This processing is of two types. One deals with the
radiometric (or brightness value) character of the image and is termed radiometric
enhancement. The other has to do with the image’s perceived spatial or geometric
character and is referred to as geometric enhancement. The latter normally involves
such operations as smoothing noise present in the data, enhancing and highlighting
edges, and detecting and enhancing lines. Radiometric enhancement is concerned
with altering the contrast range occupied by the pixels in an image. From the point
of view of computation, radiometric enhancement procedures involve determining
a new brightness value for a pixel (by some specified algorithm) from its existing
brightness value. They are often referred to therefore as point operations and can
be effectively implemented using look up tables. These are two-column tables that
associate a set of new brightness values with the set of old brightnesses. Specific
radiometric enhancement techniques are treated in Chap. 4.

Geometric enhancement procedures involve establishing a new brightness value
for a pixel by using the existing brightnesses of pixels over a specified neighbourhood.
The range of geometric enhancement techniques commonly used in the treatment
of remote sensing image data is given in Chap. 5. Both radiometric and geometric
enhancement can be of value in highlighting spatial information. It is generally only
radiometric or contrast enhancement, however, that amplifies an image’s spectral
character. A word of caution however is in order here. When contrast enhancement
is utilised, each feature in the data is generally treated independently. This can lead
to a loss of feature-to-feature relativity and thus, in the case of colour composites,
can lead to loss of colour relativity. The reason for this is depicted in Fig. 3.3, and
the effect is illustrated in Fig. 3.4.

3.4
An lntroduction to Quantitative Analysis – Classification

Identification of features in remote sensing imagery by photointerpretation is ef-
fective for global assessment of geometric characteristics and general appraisal of
ground cover types. It is, however, impracticable to apply at the pixel level unless
only a handful of pixels is of interest. As a result it is of little value for determining
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Fig. 3.3. Indication of how contrast enhancement can distort the feature-to-feature or band-
to-band relativity (and thus colour relativity) in an image. Without contrast enhancement both
soil and vegetation cover types would have a reddish appearance, whereas after enhancement
the soil takes on its characteristic bluish tones. The bands indicated correspond to the Landsat
MSS; the same effect will occur with similar band combinations from other sensors (eg. SPOT
bands 1, 2 and 3)
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Fig. 3.4. Image in which each band has identical contrast enhancement before colour com-
position a compared to that in which each band has been enhanced independently to cover its
full brightness range b. This causes a loss of band to band relativity and thus gives a different
range of hues

accurate estimates of the area in an image corresponding to a particular ground cover
type, such as the hectarage of a crop. Moreover as noted in Sect. 3.2, since photoin-
terpretation is based upon the ability of the human analyst-interpreter to assimilate
the available data, only three or so of the complete set of spectral components of
an image can be used readily. Yet there are seven bands in Landsat thematic map-
per data and many for imaging spectrometer data. It is not that all of these would
necessarily need to be used in the identification of a pixel; rather, should they all
require consideration or evaluation, then the photointerpretive approach is clearly
limited. Furthermore the human analyst is unable to discriminate to the limit of the
radiometric resolution generally available. By comparison if a computer can be used
for analysis, it could conceivably do so at the pixel level and could examine and
identify as many pixels as required. In addition, it should be possible for computer
analysis of remote sensing image data to take full account of the multidimensional
aspect of the data including its full radiometric resolution.

Computer interpretation of remote sensing image data is referred to as quantitative
analysis because of its ability to identify pixels based upon their numerical properties
and owing to its ability for counting pixels for area estimates. It is also generally called
classification, which is a method by which labels may be attached to pixels in view
of their spectral character. This labelling is implemented by a computer by having
trained it beforehand to recognise pixels with spectral similarities.

Clearly the image data for quantitative analysis must be available in digital form.
This is an advantage with image data types, such as that from Landsat, SPOT, IRS,
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etc, as against more traditional aerial photographs. The latter require digitisation
before quantitative analysis can be performed.

Detailed procedures and algorithms for quantitative analysis are the subject of
Chaps. 8, 9 and 10; Chap. 11 is used to show how these are developed into clas-
sification methodologies for effective quantitative analysis. The remainder of this
chapter however is used to provide an outline of the essential concepts in classifi-
cation. As a start it is necessary to devise a model with which to represent remote
sensing multispectral image data in a form amenable to the development of analytical
procedures.

The material in the following section assumes that we are basing our quantitative
analysis on data described by a small number of bands – say no more than 10. For
larger numbers, as in the case of imaging spectrometers, it may be necessary to
perform feature selection first, using the procedures of Chap. 9. Otherwise, library
searching or analytical methods based on spectroscopic understanding could be used,
as discussed in Chap. 13.

3.5
Multispectral Space and Spectral Classes

The most effective means by which multispectral data can be represented in order
to formulate algorithms for quantitative analysis is to plot them in a pattern space,
or multispectral vector space, with as many dimensions as there are spectral compo-
nents. In this space, each pixel of an image plots as a point with co-ordinates given
by the brightness value of the pixel in each component. This is illustrated in Fig. 3.5
for a simple two dimensional infrared versus visible red space. Provided the spectral
bands have been designed to provide good discrimination it is expected that pixels
would form groups in multispectral space corresponding to various ground cover
types, the sizes and shapes of the groups being dependent upon varieties of cover
type, systematic noise and topographic effects. The groups or clusters of pixel points
are referred to as information classes since they are the actual classes of data which
a computer will need to be able to recognise.

In practice the information class groupings may not be single clusters as depicted
in Fig. 3.5. Instead it is not unusual to find several clusters for the same region of
soil, for the same apparent type of vegetation and so on for other cover types in a
scene. These are not only as a result of specific differences in types of cover but
also result from differences in moisture content, soil types underlying vegetation
and topographic influences. Consequently, a multispectral space is more likely to
appear as shown in Fig. 3.6 in which each information class is seen to be composed
of several spectral classes.

In many cases the information classes of interest do not form distinct clusters or
groups of clusters but rather are part of a continuum of data in the multispectral space.
This happens for example when, in a land systems exercise, there is a gradation of
canopy closure with position so that satellite or aircraft sensors might see a gradual
variation in the mixture of canopy and understory. The information classes here might
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Fig. 3.5. Illustration of a two dimensional muItispectral space showing its relation to the
spectral reflectance characteristics of ground cover types

Fig. 3.6. Representation of information classes by sets of spectral classes

correspond to nominated percentage mixtures rather than to sets of well defined sub-
classes as depicted in Fig. 3.6. It is necessary in situations such as this to determine
appropriate sets of spectral classes that represent the information classes effectively.
This is demonstrated in the exercises chosen in Chap. 11.
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In quantitative analysis it is the spectral classes that a computer will be asked
to work with since they are the “natural" groupings or clusters in the data. After
quantitative analysis is complete the analyst simply associates all the relevant spec-
tral classes with the one appropriate information class. In the context of the most
commonly adopted approach to classification, based on statistical models, spectral
classes will be seen to be unimodal probability distributions and information classes
as possible multimodal distributions. The latter need to be resolved into sets of single
modes for convenience and accuracy in analysis.

3.6
Quantitative Analysis by Pattern Recognition

3.6.1
Pixel Vectors and Labelling

Recognition that image data exists in sets of spectral classes, and identification of
those classes as corresponding to specific ground cover types, is carried out using
the techniques of mathematical pattern recognition or pattern classification and their
more recent machine learning variants. The patterns are the pixel themselves, or
strictly the mathematical pixel vectors that contain the sets of brightness values for
the pixels arranged in column form:

x =

⎡
⎢⎢⎢⎣

x1
x2
...

xN

⎤
⎥⎥⎥⎦

where x1 to xN are the brightnesses of the pixel x in bands 1 to N respectively. It is
simply a mathematical convention that these are arranged in a column and enclosed
in an extended square bracket. A summary of essential results from the algebra used
for describing and manipulating these vectors is given in Appendix D.

Classification involves labelling the pixels as belonging to particular spectral
(and thus information) classes using the spectral data available. This is depicted as a
mapping in Fig. 3.7. In the terminology of statistics this is more properly referred to
as allocation rather than classification. However throughout this book, classification,
categorization, allocation and labelling are generally used synonomously.

There are two broad classes of classification procedure and each finds application
in the analysis of remote sensing image data. One is referred to as supervised clas-
sification and the other unsupervised classification. These can be used as alternative
approaches but are often combined into hybrid methodologies as demonstrated in
Chap. 11.
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Fig. 3.7. The role of classification in labelling pixels in remote sensing image data

3.6.2
Unsupervised Classification

Unsupervised classification is a means by which pixels in an image are assigned to
spectral classes without the user having foreknowledge of the existence or names of
those classes. It is performed most often using clustering methods. These procedures
can be used to determine the number and location of the spectral classes into which
the data falls and to determine the spectral class of each pixel. The analyst then
identifies those classes afterwards by associating a sample of pixels in each class
with available reference data, which could include maps and information from ground
visits. Clustering procedures are generally computationally expensive yet they are
central to the analysis of remote sensing imagery. While the information classes for
a particular exercise are known, the analyst is usually totally unaware of the spectral
classes, or sub-classes as they are sometimes called. Unsupervised classification is
therefore useful for determining the spectral class composition of the data prior to
detailed analysis by the methods of supervised classification.

The range of clustering algorithms frequently used for determination of spectral
classes and for unsupervised classification is treated in Chap. 9.

3.6.3
Supervised Classification

Before proceeding, it is important to recognise that a range of supervised classifica-
tion procedures is possible. In the following we concentrate on a statistical method-
ology that has been the mainstay of quantitative analysis since the 1970s. Other
methods are based on non-statistical, geometric techniques that seek to place sepa-
rating surfaces between the classes shown in Figs. 3.5 and 3.6. Chapter 8 treats both
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Fig. 3.8. Two dimensional multispectral space with the spectral classes represented by Gaus-
sian probability distributions

statistical and geometric supervised classification in detail, using the material in the
following as an introduction to the concepts involved.

An important assumption in statistical supervised classification usually adopted in
remote sensing is that each spectral class can be described by a probability distribution
in multispectral space: this will be a multivariable distribution with as many variables
as dimensions of the space. Such a distribution describes the chance of finding a
pixel belonging to that class at any given location in multispectral space. This is
not unreasonable since it would be imagined that most pixels in a distinct cluster
or spectral class would lie towards the centre and would decrease in density for
positions away from the class centre, thereby resembling a probability distribution.
The distribution found to be of most value is the normal or Gaussian distribution.
It gives rise to tractable mathematical descriptions of the supervised classification
process, and is robust in the sense that classification accuracy is not overly sensitive
to violations of the assumptions that the classes are normal. A two dimensional
multispectral space with the spectral classes so modelled is depicted in Fig. 3.8. The
decision boundaries shown in the figure represent those points in multispectral space
where a pixel has equal chance of belonging to two classes. The boundaries therefore
partition the space into regions associated with each class; this is developed further
in Sect. 8.2.4.
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A multidimensional normal distribution is described as a function of a vector
location in multispectral space by:

p(x) = 1

(2π)N/2|Σ |1/2 exp{−1

2
(x − m)tΣ−1(x − m)}

where x is a vector location in the N dimensional pixel space: m is the mean position
of the spectral class – i.e. the position x at which a pixel from the class is most likely
to be found, and Σ is the covariance matrix of the distribution, which describes
its spread directionally in the pixel space. Equation (6.2) shows how this matrix is
defined;Appendix E summarises some of the important properties of this distribution.

The multidimensional normal distribution is specified completely by its mean
vector and its covariance matrix. Consequently, if the mean vectors and covariance
matrices are known for each spectral class then it is possible to compute the set of
probabilities that describe the relative likelihoods of a pattern at a particular location
belonging to each of those classes. It can then be considered as belonging to the class
which indicates the highest probability. Therefore if m and Σ are known for every
spectral class in an image, every pixel in the image can be examined and labelled
corresponding to the most likely class on the basis of the probabilities computed
for the particular location for a pixel. Before that classification can be performed
however m and Σ are estimated for each class from a representative set of pixels,
commonly called a training set. These are pixels which the analyst knows as coming
from a particular (spectral) class. Estimation of m and Σ from training sets is referred
to as supervised learning. Supervised classification consists therefore of three broad
steps. First a set of training pixels is selected for each spectral class. This may be
done using information from ground surveys, aerial photography, topographic maps
or any other source of reference data. The second step is to determine m and Σ for
each class from the training data. This completes the learning phase. The third step is
the classification phase, in which the relative likelihoods for each pixel in the image
are computed and the pixel labelled according to the highest likelihood.

The view of supervised classification adopted here has been based upon an as-
sumption that the classes can be modelled by probability distributions and, as a
consequence, are described by the parameters of those distributions. As a result it
is also referred to as a parametric supervised method. Other supervised techniques
also exist, in which neither distribution models nor parameters are relevant. These
are referred to as non-parametric methods. More recently, neural networks and sup-
port vector machine non-parametric classification methods have been shown to offer
promise in remote sensing applications, as demonstrated in Sects. 8.9.1 and 8.9.2.

References for Chapter 3

A good summary, with extensive references, of the spectral reflectance characteristics of
common earth surface cover types has been given by Hoffer (1978). Material of this type is
important in photointerpretation. Landgrebe (1981) and Hoffer (1979) have provided good
general discussions on computer classification of remote sensing image data.
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More recent quantitative treatments will be found in Schowengerdt (1997), Landgrebe
(2003) and Mather (1987). Schott (1997) has treated remote sensing data flow from a systems
perspective.

R.M. Hoffer, 1978: Biological and Physical Considerations in Applying Computer-Aided
Analysis Techniques to Remote Sensing Data, in P.H. Swain & S.M. Davis, Eds.: Remote
Sensing: The Quantitative Approach, McGraw-Hill, N.Y.

R.M. Hoffer, 1979: Computer Aided Analysis Techniques for Mapping Earth Surface Fea-
tures, Technical Report 020179, Laboratory for Applications of Remote Sensing, Purdue
University, West Lafayette, Indiana.

D.A. Landgrebe, 1981: Analysis Technology for Land Remote Sensing, Proc. IEEE, 69, 628-
642.

P.M. Mather, 1987: Computer Processing of Remotely Sensed Images, Wiley, Chichester. N.Y.
D.A. Landgrebe, 2003: Signal Theory Methods in Multispectral Remote Sensing, N.J., Wiley.
P.M. Mather, 1987: Computer Processing of Remotely Sensed Images, Wiley, Chichester.
J.R. Schott, 1997: Remote Sensing: The Image Chain Approach, Oxford UP, N.Y.
R.A. Schowengerdt, 1997: Remote Sensing Models and Methods for Image Processing, 2e,

Academic, MA.

Problems

3.1 For each of the following applications would photointerpretation or quantitative analysis be
the most appropriate analytical technique? Where necessary, assume spectral discrimination
is possible.

(i) Lithological mapping in geology
(ii) Structural mapping in geology
(iii) Assessment of forest condition
(iv) Mapping movements of floods
(v) Crop area determination
(vi) Crop health assessment
(vii) Bathymetric charting
(viii) Soil mapping
(ix) Mapping drainage patterns
(x) Land system mapping

3.2 Can contrast enhancing image data beforehand improve its discrimination for machine
analysis?

3.3 Prepare a table comparing the attributes of supervised and unsupervised classification.
You may care to consider the issues of training data, cost (see Chap. 11), analyst interaction
and spectral class determination.

3.4 A problem with using probability models to describe classes in multispectral space is that
atypical pixels can be erroneously classified. For example, a pixel with high red and infrared
brightness in Fig. 3.8 would be classified as vegetation even though it is more reasonably soil.
This is a result of the positions of the decision boundaries shown. Suggest a means by which
this situation can be avoided. (This is taken up in Sect. 8.2.5).

3.5 The collection of the four brightness values for a pixel in a Landsat multispectral scanner
image is often called a vector. Each of the four components in such a vector can take either
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128 or 64 different values, depending upon the band. How many distinct pixel vectors are
possible? How many are there for Landsat thematic mapper image data?

lt is estimated that the human visual system can discriminate about 20,000 colours (J.O.
Whittaker, lntroduction to Psychology, Saunders, Philadelphia, 1965).

Comment on the radiometric handling capability of machine analysis, compared to colour
discrimination by a human analyst/interpreter.

3.6 Information classes are resolved into so-called spectral classes prior to classification.
These are pixel groups amenable to modelling by single multivariate Gaussian or normal
distribution functions. Why are more complex distributions not employed to obviate the need
to establish spectral classes? (Hint: How much is known about multi-variate distributions
other than Gaussian?)



4
Radiometric Enhancement Techniques

4.1
Introduction

4.1.1
Point Operations and Look Up Tables

Image analysis by photointerpretation is often facilitated when the radiometric na-
ture of the image is enhanced to improve its visual impact. Specific differences in
vegetation and soil types, for example, may be brought out by increasing the con-
trast of an image. In a similar manner subtle differences in brightness value can be
highlighted either by contrast modification or by assigning quite different colours to
those levels. The latter method is known as colour density slicing.

It is the purpose of this chapter to present a variety of radiometric modification
procedures often used with remote sensing image data. The range of techniques
treated is characterised by the common feature that a new brightness value for a pixel
is generated only from its existing value. Neighbouring pixels have no influence, as
they do in the geometric enhancement procedures that are the subject of Chap. 5.
Consequently, radiometric enhancement techniques are sometimes referred to as
point or pixel-specific operations.

All of the techniques to be covered in this chapter can be represented either as a
graph or as a table that expresses the relationship between the old and new brightness
values. In tabular form this is referred to as a look up table (LUT).

4.1.2
Scalar and Vector Images

Two particular image types require consideration when treating image enhancement.
The first could be referred to as a scalar image, in which each pixel has only a single
brightness value associated with it. Such is the case for a simple black and white
image. The second type is a vector image, in which each pixel is represented by
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a vector of brightness values, which might be the blue, green and red components
of the pixel in a colour scene or, for a remote sensing multispectral image, may
be the various spectral response components for the pixel. Most image enhancement
techniques relate to scalar images and also to the scalar components of vector imagery.
Such is the case with all techniques given in this chapter. Enhancement methods that
relate particularly to vector imagery tend to be transformation oriented. Those are
treated in Chap. 6.

4.2
The Image Histogram

Consider a spatially quantised scalar image such as that corresponding to one of the
Landsat thematic mapper bands; in this case the brightness values are also quantised.
If each pixel in the image is examined and its brightness value noted, a graph of
number of pixels with a given brightness versus brightness value can be constructed.
This is referred to as the histogram of the image. The tonal or radiometric quality
of an image can be assessed from its histogram as illustrated in Fig. 4.1. An image
which makes good use of the available range of brightness values has a histogram
with occupied bins (or bars) over its full range, but without significantly large bars
at black or white.

An image has a unique histogram but the reverse is not true in general since a
histogram contains only radiometric and no spatial information. A point of some
importance is that the histogram can be viewed as a discrete probability distribution
since the relative height of a particular bar, normalised by the total number of pixels
in the image segment, indicates the chance of finding a pixel with that particular
brightness value somewhere in the image.

4.3
Contrast Modification in Image Data

4.3.1
Histogram Modification Rule

Suppose one has available a digital image with poor contrast, such as that in Fig. 4.1a,
and it is desired to improve its contrast to obtain an image with a histogram that has a
good spread of bars over the available brightness range, resembling that in Fig. 4.1c.
In other words, a so-called contrast stretching of the image data is required. Often
the degree of stretching desired is apparent. For example the original histogram may
occupy brightness values between 40 and 75 and we might wish to expand this range
to the maximum possible, say 0 to 255. Even though the modification is somewhat
obvious it is necessary to express it in mathematical terms in order to relegate it
to a computer. Contrast modification is a mapping of brightness values, in that the
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Fig. 4.1. Examples of image histograms.The image in a shows poor contrast since its histogram
utilizes a restricted range of brightness value. The image in b is very contrasty with saturation
in the black and white regions resulting in some loss of discrimination of bright and dull
features. The image in c makes optimum use of the available brightness levels and shows
good contrast. Its histogram shows a good spread of bars but without the large bars at black
and white indicative of the saturation in image b
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brightness value of a particular histogram bar is respecified more favourably. The
bars themselves though are not altered in size, although in some cases some bars may
be mapped to the same new brightness value and will be superimposed. In general,
however, the new histogram will have the same number of bars as the old. They will
simply be at different locations.

The mapping of brightness values associated with contrast modification can be
described as

y = f (x) (4.1)

where x is the old brightness value of a particular bar in the histogram and y is the
corresponding new brightness value.

In principle, what we want to do in contrast modification is find the form of f (x)

that will implement the desired changes in pixel brightness and thus in the perceived
contrast of the image. Sometimes that is quite simple; on other occasions f (x) might
be quite a complicated function. In the following sections we look at simple contrast
changes first.

4.3.2
Linear Contrast Modification

The most common contrast modification operation is that in which the new (y) and
old (x) brightness values of the pixels in an image are related in a linear fashion, i.e.
so that (4.1) can be expressed

y = f (x) = ax + b .

A simple numerical example of linear contrast modification is shown in Fig. 4.2,
whereas a poorly contrasting image that has been radiometrically enhanced by linear
contrast stretching is shown in Fig. 4.3.

The look-up table for the particular linear stretch in Fig. 4.2 has been included in
the figure. In practice this would be used by a computer routine to produce the new
image. This is done by reading the brightness values of the original version, pixel by
pixel, substituting these into the left hand side of the table and then reading the new
brightness value for a pixel from the corresponding entry on the right hand side of the
table. It is important to note in digital image handling that the new brightness values,
just as the old, most be discrete, and cover usually the same range of brightnesses.
Generally this will require some rounding to integer form of the new brightness
values calculated from the mapping function y = f (x). A further point to note in
the example of Fig. 4.2 is that the look-up table is undefined outside the range 2
to 4 of inputs. To do so would generate output brightness values that are outside
the range valid for this example. In practice, linear contrast stretching is generally
implemented as the saturating linear contrast enhancement technique in Sect. 4.3.3
following.



4.3 Contrast Modification in Image Data 87

Fig. 4.2. Simple numerical example of linear contrast modification. The available range of
discrete brightness values is 0 to 7. Note that a non-integral output brightness value might be
indicated. In practice this is rounded to the nearest integer

Fig. 4.3. Linear contrast modification of the image in a to produce the visually better product
in b
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4.3.3
Saturating Linear Contrast Enhancement

Frequently a better image product is given when linear contrast enhancement is used
to give some degree of saturation at the black and white ends of the histogram. Such is
the case, for example, if the darker regions in an image correspond to the same ground
cover type within which small radiometric variations are of no interest. Similarly,
a particular region of interest in an image may occupy a restricted brightness value
range; saturating linear contrast enhancement is then employed to expand that range
to the maximum possible dynamic range of the display device with all other regions
being mapped to either black or white. The brightness value mapping function y =
f (x) for saturating linear contrast enhancement is shown in Fig. 4.4, in which Bmax

and Bmin are the user-determined maximum and minimum brightness values that are
to be expanded to the lowest and highest brightness levels supported by the display
device.

Fig. 4.4. Saturating linear contrast mapping

4.3.4
Automatic Contrast Enhancement

Most remote sensing image data is too low in brightness and poor in contrast to give an
acceptable image product if displayed directly in raw form. This is a result of the need
to have the dynamic range of satellite and aircraft sensors so adjusted that a variety
of cover types over many images can be detected without leading to saturation of
the detectors or without useful signals being lost in noise. As a consequence a single
typical image will contain a restricted set of brightnesses.

Image display systems frequently implement an automatic contrast stretch on the
raw data in order to give a product with good contrast.

Typically the automatic enhancement procedure is a saturating linear stretch.
The cut-off and saturation limits Bmin and Bmax are chosen by determining the mean
brightness of the raw data and its standard deviation and then making Bmin equal
to the mean less three standard deviations and Bmax equal to the mean plus three
standard deviations.
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4.3.5
Logarithmic and Exponential Contrast Enhancement

Logarithmic and exponential mappings of brightness values between original and
modified images are useful for enhancing dark and light features respectively. The
mapping functions are depicted in Fig. 4.5, along with their mathematical expres-
sions. It is particularly important with these that the output values be scaled to lie
within the range of the device used to display the product (or the range appropriate to
files used for storage in a computer memory) and that the output values be rounded
to allowed, discrete values.

Fig. 4.5. Logarithmic a and exponential b brightness mapping functions. The parameters a, b

and c are usually included to adjust the overall brightness and contrast of the output product

4.3.6
Piecewise Linear Contrast Modification

A particularly useful and flexible contrast modification procedure is the piecewise
linear mapping function shown in Fig. 4.6. This is characterised by a set of user
specified break points as shown. Generally the user can also specify the number of

Fig. 4.6. Piecewise linear contrast modifica-
tion function, characterised by the break points
shown. These are user specified (as new, old
pairs). It is clearly important that the function
commence at 0,0 and finish at L − 1, L − 1 as
shown, where L is the total number of bright-
ness levels
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break points. This method has particular value in implementing some of the contrast
matching procedures in Sects. 4.4 and 4.5 following.

It should be noted that this is a more general version of the saturating linear
contrast stretch of Sect. 4.3.3.

4.4
Histogram Equalization

4.4.1
Use of the Cumulative Histogram

The foregoing sections have addressed the task of simple expansion (or contraction)
of the histogram of an image. In many situations however it is desirable to modify the
contrast of an image so that its histogram matches a preconceived shape, other than
a simple closed form mathematical modification of the original version. A particular
and important modified shape is the uniform histogram in which, in principle, each
bar has the same height. Such a histogram has associated with it an image that utilises
the available brightness levels equally and thus should give a display in which there is
good representation of detail at all brightness values. In practice a perfectly uniform
histogram cannot be achieved for digital image data; the procedure following however
produces a histogram that is quasi-uniform on the average. The method of producing
a uniform histogram is known generally as histogram equilization.

It is useful, in developing the actual methods to be used for histogram equalisation,
if we regard the histograms as continuous curves as depicted in Fig. 4.7, adapted from
Castleman (1996). In this hi(x) represents the original image histogram (the “input”
to the modification process) and ho(y) represents the histogram of the image after it
has had its contrast modified (the “output” from the modification process).

In Fig. 4.7 the number of pixels represented by the range y to y + δy in the
modified histogram must, by definition in the diagram, be equal to the number of
pixels represented in the range x to x +δx in the original histogram. Given that hi(x)

and ho(y) are strictly density functions, this implies

hi(x)δx = ho(y)δy

so that in the limit as δx, δy → 0, using simple calculus

ho(y) = hi(x)
dx

dy
(4.2)

We can use this last expression in two ways. First, if we know the original (input)
histogram – which is usually always the case – and the function y = f (x), we can
determine the resulting (output) histogram. Alternatively, if we know the original
histogram, and the shape of the output histogram we want – e.g. “flat” in the case of
contrast equalisation – then we can use (4.2) to help us find the y = f (x) that will
generate that result. Our interest here is in the second approach.
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Fig. 4.7. Diagrammatic representation of contrast modification by the brightness value map-
ping function y = f (x)

Note that if y = f (x), and thus x = f −1(y), (4.2) can be expressed

ho(y) = hi(f
−1(y))

df −1(y)

dy

which is a mathematical expression for the modified histogram1,2.
To develop the brightness value modification procedure for contrast equalisation

it is convenient to re-express (4.2) as

dy

dx
= hi(x)

ho(y)

For a uniform histogram ho(y) and thus 1/ho(y) should be constant – i.e. independent
of y. This is a mathematical idealisation for real data, and rarely will we achieve a
totally flat modified histogram, as the examples in the following will show. However,

1 This requires the inverse x = f −1(y) to exist. For the contrast modification procedures
used in remote sensing that is generally the case. Should an inverse not exist – for example if
y = f (x) is not monotonic – Castleman (1996) recommends treating the original brightness
value rangex as a set of contiguous sub-ranges within each of whichy = f (x) is monotonic.

2 If we apply this expression to the brightness value modification function for linear contrast

enhancement we have y = ax + b, giving x = y−b
a so that ho(y) = 1

a h
(

y−b
a

)
. Relative

to the original histogram, the modified version is shifted because of the effect of b, is
spread or compressed depending on whether a is greater or less than 1 and is modified in
amplitude. The last effect only relates to the continuous function and cannot happen with
discrete brightness value data.
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Fig. 4.8. a simple histogram and b the corresponding cumulative histogram

making this assumption mathematically will generate for us the process we need to
adopt to equalise image histograms. With this we can write the last expression as

dy

dx
= constant hi(x)

so that

dy = constant hi(x)dx

giving by integration

y = constant
∫

hi(x)dx .

How should we interpret the integral on the right hand side of this last expression?
In effect it is the continuous version of a cumulative histogram which, in discrete
form, is a graph of the number of pixels below a given brightness value as a function
of brightness value as illustrated in Fig. 4.8. The cumulative histogram is computed
by summing the bars of the ordinary histogram from left to right.

If we call the cumulative histogram C(x), then

y = constant C(x)

is the brightness value modification formula for histogram (contrast) equalisation.
How do we find the value of the “constant”? We note first that the range of values of
y is required to be 0 to L−1 to match the L brightness values available in the image.
Secondly, note that the maximum value of C(x) is N , the total number of pixels in
the image, as seen in Fig. 4.8. Thus the constant needs to be (L − 1)/N in order to
generate the correct range for y. In summary, the brightness value mapping function
that gives contrast equalisation is

y = L − 1

N
C(x) . (4.3)

where C(x) is the discrete cumulative histogram.
Equation (4.3) is, in effect, a look-up table that can be used to move histogram

bars to new brightness value locations. To illustrate the concept, consider the need to



4.4 Histogram Equalization 93

Fig. 4.9. Example of histogram
equalisation. a Original his-
togram; b Cumulative his-
togram used to produce the
look up table in Table 4.1; c
The resulting quasi-uniform
histogram

“flatten” the simple histogram shown in Fig. 4.9a. This corresponds to a hypothetical
image with 24 pixels, each of which can take on one of 16 possible brightness values.
The corresponding cumulative histogram is shown in Fig. 4.9b, and the scaling factor
in (4.3) is (L − 1)/N = 15/24 = 0.625. Using (4.3) the new brightness value
location of a histogram bar is given by finding its original location on the abcissa of
the cumulative histogram (x) and then reading its unscaled new location (y) from
the ordinate. Multiplication by the scaling factor then produces the required new
value. It is likely, however, that this may not be one of the discrete brightness values
available (for the output display device) in which case the associated bar is moved to
the nearest available brightness value. This procedure is summarised, for the example
at hand, in Table 4.1, and the new, quasi-uniform histogram is given in Fig. 4.9c.
It is important to emphasise that additional brightness values cannot be created nor
can pixels from a single brightness value in an original histogram be distributed over
several brightness values in the modified version. All that can be done is to re-map
the brightness values to give a histogram that is as uniform as possible. Sometimes
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Table 4.1. Look up table generation for histogram equalization example

Fig. 4.10. Image with linear contrast stretch a compared with the same image enhanced with
a stretch from histogram equalization b

this entails some bars from the original histogram being moved to the same new
location and thereby being superimposed, as is observed in the example.

In practice, the look up table created in Table 4.1 would be applied to every pixel
in the image by feeding into the table the original brightness value for the pixel and
reading from the table the new brightness value.

Figure 4.10 shows an example of an image with a simple linear contrast modifi-
cation compared to the same image but in which contrast modification by histogram



4.4 Histogram Equalization 95

Table 4.2. Look up table for histogram equalization using 8 output brightnesses from 16 input
brightnesses

equalization has been implemented. Many of these subtle contrast changing tech-
niques only give perceived improvement of detail on some image types and some-
times require all components of a colour composite image to be so processed before
an “improvement” is noticeable.

It is not necessary to retain the same number of distinct brightness values in an
equalized histogram as in the original. Sometimes it is desirable to have a smaller
output set and thereby produce a histogram with (fewer) bars that are closer in height
than would otherwise be the case. This is implemented by redefining L in (4.3) to
be the new total number of bars. Repeating the example of Table 4.1 and Fig. 4.9
for the case of L = 8 (rather than 16) gives the look up table of Table 4.2. Such a
strategy would be an appropriate one to adopt when using an output device with a
small number of brightness values (grey levels).

4.4.2
Anomalies in Histogram Equalization

Images with extensive homogeneous regions will give rise to histograms with large
bars at the corresponding brightness values. A particular example is a Landsat mul-
tispectral scanner infrared image with a large expanse of water. Because histogram
equalization creates a histogram that is uniform on the average by grouping smaller
bars together, the equalized version of an image such as that just described will have
poor contrast and little detail – quite the opposite to what is intended. The reason for
this can be seen in the simple illustration of Fig. 4.11. The cumulative histogram used
as the look-up table for the enhancement is dominated by the large bar at brightness
value 0. The resulting image would be mostly grey and white with little grey level
discrimination.
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Fig. 4.11. Illustration of anomalous histogram
equalization caused by large bars in the original
histogram. a Original, with large bar at 0; b Cu-
mulative histogram of the original; c Equalized
histogram

A similar situation happens when the automatic contrast enhancement procedure
of Sect. 4.3.4 is applied to images with large regions of constant brightness. This
can give highly contrasting images on colour display systems; an acceptable display
may require some manual adjustment of contrast taking due regard of the abnormally
large histogram bars.

To avoid the anomaly in histogram equalization caused by the types of image
discussed it is necessary to reduce the significance of the dominating bars in the
image histograms. This can be done simply by arbitarily reducing their size when
constructing the look up table, remembering to take account of this in the scale factor
of (4.3). Another approach is to produce the cumulative histogram and thus look-up
table on a subset of the image that does not include any, or any substantial portion,
of the dominating region. Hogan (1981) has also provided an alternative procedure,
based upon accumulating the histogram over “buckets” of brightness value. Once a
bucket is full to a prespecified level, a new bucket is started.
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4.5
Histogram Matching

4.5.1
Principle of Histogram Matching

Frequently it is desirable to match the histogram of one image to that of another
image and in so doing make the apparent distribution of brightness values in the two
images as close as possible. This would be necessary for example when a pair of
contiguous images are to be joined to form a mosaic. Matching their histograms will
minimise the brightness value variations across the join. In another case, it might be
desirable to match the histogram of an image to a pre-specified shape, other than the
uniform distribution treated in the previous section. For example, it is often found of
value in photointerpretation to have an image whose histogram is a Gaussian function
of brightness, in which most pixels have mid-range brightness values with only a
few in the extreme white and black regions. The histogram matching technique, to
be derived now, allows both of these procedures to be implemented.

The process of histogram matching is best looked at as having two stages, as
depicted in Fig. 4.12. Suppose it is desired to match the histogram of a given image,
hi(x), to the histogram ho(y); ho(y) could be a pre-specified mathematical expres-
sion or the histogram of the second image. Then the steps in the process are to
equalize the histogram hi(x) by the methods of the previous section to obtain an
intermediate histogram h∗(z), which is then modified to the desired shape ho(y).

If z = f (x) is the transformation that flattens hi(x) to produce h∗(z) and z =
g(y) is the operation that would flatten the reference histogram ho(y) then the overall
mapping of brightness values required to produce ho(y) from hi(x) is

y = g−1(z), z = f (x) or y = g−1{f (x)}. (4.4)

If, as is often the case, the number of pixels and brightness values in hi(x) and
ho(y) are the same, then the (L − 1)/N scaling factor in (4.3) will cancel in (4.4)
and can therefore be ignored in establishing the look up table which implements
the contrast matching process. Should the number of pixels be different, say N1 in
the image to be modified and N2 in the reference image then a scaling factor of

Fig. 4.12. The stages in histogram matching



98 4 Radiometric Enhancement Techniques

N2/N1 will occur in (4.4). All scaling considerations can be bypassed however if the
cumulative histograms are always scaled to some normalised value such as unity, or
100% (of the total number of pixels in an image).

4.5.2
Image to Image Contrast Matching

Figure 4.13 illustrates the steps implicit in (4.4) in matching source and reference
histograms. In this case the reference histogram is that of a second image. Note that
the procedure is to use the cumulative histogram of the source image to obtain new
brightness values in the manner of the previous section by reading ordinate values
corresponding to original brightness values entered on the abcissa. The new values
are then entered into the ordinate of the cumulative reference histogram and the final
brightness values (for the bars of the source histogram) are read from the abcissa;
i.e. the cumulative reference histogram is used in reverse as indicated by the g−1

operation in (4.4). The look up table for this example is shown in Table 4.3. Again,

Fig. 4.13. An illustration of the steps in histogram matching
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Table 4.3. Look up table generation for contrast matching

note that some of the new brightness values produced may not be in the available
range; as before, they are adjusted to the nearest acceptable value.

An example using a pair of contiguous image segments is shown in Fig. 4.14.
Because of seasonal differences the contrasts are quite different. Using the cumulative
histograms an acceptable matching is achieved. Such a process, as noted earlier, is an
essential step in producing a mosaic of separate contiguous images. Another step is
to ensure geometric integrity of the join. This is done using the geometric registration
procedures of Sect. 2.5.

4.5.3
Matching to a Mathematical Reference

In some applications it is of value to pre-specify the desired shape of an image
histogram to give a modified image with a particular distribution of brightness values.
To implement this it is necessary to take an existing image histogram and modify it
according to the procedures of Sect. 4.5.1. The reference is a mathematical function
that describes the desired shape.A particular example is to match an image histogram
to a Gaussian or normal shape. Often this is referred to as applying a “gaussian
stretch” to an image; it yields a modified version with few black and white regions
and in which most detail is contained in the mid-grey range. This requires a reference
histogram in the form of a normal distribution. However since a cumulative version
of the reference is to be used, it is really a cumulative normal distribution that is
required. Fortunately cumulative normal tables and curves are readily available. To
use such a table in the contrast matching situation requires its ordinate to be adjusted
to the total number of pixels in the image to be modified and its abcissa to be chosen
to match the maximum allowable brightness range in the image. The latter requires
consideration to be given to the number of standard deviations of the Gaussian
distribution to be contained in the total brightness value range, having in mind that
the Gaussian function is continuous to ±∞. The mean of the distribution is placed
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Fig. 4.14. a Contiguous Landsat multispectral scanner images showing contrast and brightness
differences resulting from seasonal effects. The left hand image is an autumn scene and that
on the right a summer scene, both of the northern suburbs of Sydney, Australia. b The same
image pair but in which the histogram of the autumn scene has been matched to that of the
summer scene
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Fig. 4.15. Illustration of the modification of an image histogram to a pseudo-Gaussian shape.
a Original histogram; b Cumulative normal histogram; c Histogram matched to Gaussian
reference

usually at the mid-point of the brightness scale and commonly the standard deviation
is chosen such that the extreme black and white regions are three standard deviations
from the mean. A simple illustration is shown in Fig. 4.15.

4.6
Density Slicing

4.6.1
Black and White Density Slicing

A point operation often performed with remote sensing image data is to map ranges
of brightness value to particular shades of grey. In this way the overall discrete
number of brightness values used in the image is reduced and some detail is lost.
However the effect of noise can also be reduced and the image becomes segmented,
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Fig. 4.16. The brightness value
mapping function corresponding
to black and white density
slicing. The thresholds are user
specified

Fig. 4.17. Simple example of creating the
look-up tables for a colour display device
to implement colour density slicing. Here
only six colours have been chosen for sim-
plicity

or sometimes contoured, in sections of similar grey level, in which each segment is
represented by a user specified brightness. The technique is known as density slicing
and finds value, for example, in highlighting bathymetry in images of water regions
when penetration is acceptable. When used generally to segment a scalar image into
significant regions of interest it is acting as a simple one dimensional parallelepiped
classifier (see Sect. 8.4). The brightness value mapping function for density slicing
is as illustrated in Fig. 4.16. The thresholds in such a function are entered by the user.
An image in which the technique has been used to highlight bathymetry is shown
in Fig. 4.18. Here differences in Landsat multispectral scanner visible imagery, at
brightnesses too low to be discriminated by eye, have been mapped to new grey levels
to make the detail apparent.
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Fig. 4.18. Illustration of contouring in water detail using density slicing. a The image used is
a band 5 + band 7 composite Landsat multispectral scanner image, smoothed to reduce line
striping and then density sliced; b Black and white density slicing; c Colour density slicing
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4.6.2
Colour Density Slicing and Pseudocolouring

A simple yet lucid extension of black and white density slicing is to use colours to
highlight brightness value ranges, rather than simple grey levels. This is known as
colour density slicing. Provided the colours are chosen suitably, it can allow fine detail
to be made immediately apparent. It is a particularly simple operation to implement
on a display system by establishing three brightness value mapping functions in the
manner depicted in Fig. 4.17. Here one function is applied to each of the colour
primaries used in the display device. An example of the use of colour density slicing,
again for bathymetric purposes, is given in Fig. 4.18.

This technique is also used to give a colour rendition to black and white imagery.
It is then usually called pseudocolouring. Where possible this uses as many distinct
hues as there are brightness values in the image. In this way the contours introduced
by density slicing are avoided. Moreover it is of value in perception if the hues used
are graded continuously. For example, starting with black, moving from dark blue,
mid blue, light blue, dark green, etc. through to oranges and reds will give a much
more acceptable pseudocoloured product than one in which the hues are chosen
arbitarily.
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Problems

4.1 One form of histogram modification is to match the histogram of an image to a Gaussian
or normal function. Suppose a raw image has the histogram indicated in Fig. 4.19. Produce
the look-up table that describes how the brightness values of the image should be changed if
the histogram is to be mapped, as nearly as possible, to a Gaussian histogram with a mean of
8 and a standard deviation of 2 brightness values. Note that the sum of counts in the Gaussian
reference histogram must be the same as that in the raw data histogram.

Fig. 4.19. Histogram

4.2 The histogram of a particular image is shown in Fig. 4.20. Produce the modified version
that results from:

Fig. 4.20. Histogram of a single dimensional image



106 4 Radiometric Enhancement Techniques

(i) a simple linear contrast stretch which makes use of the full range of brightness values
(ii) a simple piecewise linear stretch that maps the range (12, 23) to (0, 31) and
(iii) histogram equalization (i.e. producing a quasi-uniform histogram).

4.3 A two-dimensional histogram for particular two band image data is shown in Fig. 4.21.
Determine the histogram that results from a simple linear contrast stretch on each band indi-
vidually.

Fig. 4.21. Two-dimensional histogram

4.4 Determine, algebraically, the contrast mapping function that equalizes the contrast of an
image which has a Gaussian histogram at the centre of the brightness value range, with the
extremities of the range being three standard deviations from the mean.

4.5 What is the shape of the cumulative histogram of an image that has been contrast (his-
togram) equalized? Can this be used as a figure of merit in histogram equalization?

4.6 Clouds and large regions of clear, deep water frequently give histograms for near infrared
imagery that have large high brightness level or low brightness value bars respectively. Sketch
histograms of these types. Qualitatively, equalize the histograms using the material of Sect. 4.4
and comment on the undesirable appearance of the corresponding contrast enhanced images.
Show that the situation can be rectified somewhat by artificially limiting the large bars to values
not greatly different to the heights of other bars in the histogram, provided the accompanying
cumulative histograms are normalised to correspond to the correct number of pixels in the
image. A similar, but more effective procedure has been given in A. Hogan (1981).

4.7 Two Landsat images are to be joined side by side to form a mosaic for a particular
application. To give the new, combined image a uniform appearance it is decided that the
range and distribution of brightness levels in the first image should be made to match those of
the second image, before they are joined. This is to be carried out by matching the histogram
of image 1 to that of image 2. The original histograms are shown in Fig. 4.22. Produce a look
up table that can be used to transform the pixel brightness values of image 1 in order to match
the histograms as nearly as possible. Use the look-up table to modify the histogram of image 1
and comment on the degree to which contrast matching has been achieved.
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Fig. 4.22. Histograms of image 1 and image 2

4.8 (a) Contrast enhancement is frequently carried out on remote sensing image data. Describe
the advantages in doing so, if the data is to be analysed by

(i) photointerpretation
(ii) quantitative computer methods.

(b) A particular two band image has the two dimensional histogram shown in Fig. 4.23. It is
proposed to enhance the contrast of the image by matching the histograms in each band to
the triangular profile shown. Produce look-up tables to enable each band to be enhanced, and
from these produce the new two-dimensional histogram for the image.

Fig. 4.23. Two dimensional histogram
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4.9 Plot the equilized histogram for the example of Table 4.2. Compare it with Fig. 4.9 and
comment on the effect of restricting the range of output brightnesses. Repeat the exercise for
the cases of 4 and 2 output brightness values.

4.10 Suppose a particular image has been modified by (i) linear contrast enhancement and
(ii) by histogram equalisation. Suppose you have available the digital image data for both
the original image and the contrast modified versions. By inspecting the data (or histograms)
describe how you would determine quantitatively which technique was used in each case.



5
Geometric Enhancement
Using Image Domain Techniques

5.1
Neighbourhood Operations

This chapter presents methods by which the geometric detail in an image may be
modified and enhanced. The specific techniques covered are applied to the image data
directly and could be called image domain techniques. These are alternatives to pro-
cedures used in the spatial frequency domain which require Fourier transformation
of the image beforehand. Those are treated in Chap. 7.

In contrast to the point operations used for radiometric enhancement, techniques
for geometric enhancement are characterised by operations over neighbourhoods.
The procedures still determine modified brightness values for an image’s pixels;
however, the new value for a given pixel is derived from the brightnesses of a set of the
surrounding pixels. It is this spatial interdependence of the pixel values that leads to
variations in the perceived image geometric detail. The neighbourhood influence will
be apparent readily in the techniques of this chapter; for the Fourier transformation
methods of Chap. 7 it will be discerned in the definition of the Fourier operation.

5.2
Template Operators

Geometric enhancements of most interest in remote sensing generally relate to
smoothing, edge detection and enhancement, and line detection. Enhancement of
edges and lines leads to image sharpening. Each of these operations is considered in
the following sections. Most of the methods to be presented are, or can be expressed
as, template techniques in which a template, box or window is defined and then
moved over the image row by row and column by column. The products of the pixel
brightness values, covered by the template at a particular position, and the template
entries, are taken and summed to give the template response. This response is then
used to define a new brightness value for the pixel currently at the centre of the
template. When this is done for every pixel in the image, a radiometrically modified
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Fig. 5.1. A 3 × 3 template positioned over a group of nine image pixels, showing the relative
locations of pixels and template entry addresses

image is produced that enhances or smooths geometric features according to the
specific numbers loaded into the template. A 3 × 3 template is illustrated in Fig. 5.1.
Templates of any size can be defined, and for an M by N pixel sized template, the
response for image pixel i, j is

r(i, j) =
M∑

m=1

N∑
n=1

φ(m, n) t (m, n) (5.1)

where φ(m, n) is the pixel brightness value, addressed according to the template
position and t (m, n) is the template entry at that location. Often the template entries
collectively are referred to as the ‘kernel’ of the template and the template technique
generally is called convolution, in view of its similarity to time domain convolution
in linear system theory. This concept is developed in Sect. 5.3 below.

5.3
Geometric Enhancement as a Convolution Operation

This section presents a brief linear system theory basis for the use of the template
expression of (5.1). It contains no results essential to the remainder of the chapter
and can be safely passed over by the reader satisfied with (5.1) from an intuitive
viewpoint.

Consider a signal in time represented as x(t). Suppose this is passed through a
system of some sort to produce a modified signal y(t) as depicted in Fig. 5.2. The
system here could be an intentional one such as an amplifier or filter, inserted to
change the signal in a predetermined way; alternatively it could represent uninten-
tional modification of the signal such as by distortion or the effect of noise. The
properties of the system can be described by a function of time h(t). This is called

Fig. 5.2. Signal model of a linear system
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its impulse response (or sometimes its transfer function, although that term is more
properly used for the Fourier transform of the impulse response, as noted in Chap. 7).

The relationship between y(t) and x(t) is described by the convolution operation.
This can be expressed as an integral

y(t) =
∞∫

−∞
x(τ) h(t − τ) dτ � x(t) ∗ h(t) (5.2)

as shown in McGillem and Cooper (1984). McGillem and Cooper, Castleman (1996)
and Brigham (1974, 1988) all give comprehensive accounts of the properties of
convolution and the characteristics of linear systems derived from the operation of
convolution.

A similar mathematical description applies when images are used in place of sig-
nals in (5.2) and Fig. 5.2. The major difference is that the image has two independent
variables (its i and j pixel position indices, or address) whereas the signal x(t) in
Fig. 5.2 has only one – time. Consequently the transfer function of a system that
operates on an image is also two dimensional, and the processed image is given by a
two dimensional version of the convolution integral in (5.2). In this case the system
can represent any process that modifies the image. It could, for example, account for
degradation brought about by the finite point spread function of an image acquisition
instrument or an image display device. It could also represent the effect of intentional
image processing such as that used in geometric enhancement. In both cases if the
new and old versions of the image are described by r(x, y) and φ(x, y) respectively,
where x and y are continuous position variables that describe the locations of points
in a continuous image domain, then the two dimensional convolution operation is
described as

r(x, y) =
∞∫

−∞

∞∫
−∞

φ(u, v)t ′(x − u, y − v)dudv (5.3)

where t ′(x, y) is the two dimensional system transfer function (impulse response).
It will also be called the system function here.

Even though, in principle, φ(x, y) and t ′(x, y) are both defined over the com-
plete range of x and y, in practice they are both limited. Clearly the image itself
must be finite in extent spatially; the system function t ′(x, y) is also generally quite
limited. Should it represent the point spread function of an imaging device it would
be significantly non-zero over only a small range of x and y. (If it were an impulse
it can be shown that (5.3) yields r(x, y) = φ(x, y) as would be expected).

In order to be applicable to digital image data it is necessary to modify (5.3) so
that the discrete natures of x and y are made explicit and, consequently, the integrals
are replaced by suitable summations. If we let i, j represent discrete values of x, y

and similarly µ, ν represent discrete values of the integration variables u, v then (5.3)
can be written

r(i, j) =
∑
µ

∑
ν

φ(µ, ν) t ′(i − µ, j − ν) (5.4)
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Fig. 5.3. An illustration of the operations implicit in (5.4)

which is a digital form of the two dimensional convolution integral. The sums are
taken over all values of µ, ν for which a non-zero result exists.

To see how (5.4) would be used in practice it is necessary to interpret the sequence
of operations implied. For clarity, assume the non-zero range of t ′(i, j) is quite small
compared with that for the image φ(i, j). Also assume t ′(i, j) is a square array of
samples, for example 3 × 3. These assumptions in no way prejudice the generality
of what follows.

In (5.4) the negative signs on µ and ν in t ′(i−µ, j −ν) imply a reflection through
both axes. This is tantamount to a rotation of the system function through 180◦ before
any further operations take place. Let the rotated form be called t (µ − i, ν − j).

Equation (5.4) implies that a brightness value for the response image at pixel
location i, j -viz. r(i, j) is given by taking the non-zero products of the original
version of the image and the rotated system function and adding these together. In
so doing, note that the origin of the µ, v co-ordinates is the same as for the i, j

co-ordinates just as the dummy and real variable co-ordinates in (5.2) and (5.3) are
the same. Also note that the effect of µ − i, ν − j in t (µ − i, ν − j) is to shift the
origin of the rotated system function to the location i, j – the current pixel address
for which a new brightness value is to be calculated. These two points are illustrated
in Fig. 5.3. The need to produce brightness values for pixels in the response image
at every i, j means that the origin of the rotated system function must be moved
progressively, implying that a different set of products between the original image
and rotated system function is taken every time.

The sequence of operations described between the rotated system function and
the original image are the same as those noted in Sect. 5.2 in regard to (5.1). The
only difference in fact between (5.1) and (5.4) lies in the definitions of the indices
m, n and µ, ν. In (5.1) the pixel addresses are referred to an origin defined at the
bottom left hand corner of the template, with the successive shifts mentioned in the
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accompanying description. This is a simple way to describe the template and readily
allows any template size to be defined. In (5.4) the shifts are incorporated into the
expression by defining the image and system function origins correctly.

The templates of Sect. 5.2 are equivalent to the rotated system functions of this
section. Consequently any image modification operation that can be modelled by
convolution, and described in principle in a manner similar to that in Fig. 5.2, can
also be expressed in template form. For example, if the point spread function of a
display device is known, then an equivalent template can be devised, noting that the
180◦ rotation is important if the system function is not symmetric. In a like manner
intentional modifications of an image – such as smoothing and sharpening – can also
be implemented using templates. The actual template entries to be used can often
be developed intuitively, having careful regard to the desired results. Alternatively
the system function t ′(i, j) necessary to implement a particular desired filtering
operation can be defined first in the spatial frequency domain, using the material
from Chap. 7, and then transformed back to the image domain. Rotation by 180◦
then gives the required template.

5.4
Image Domain Versus Fourier Transformation Approaches

Most geometric enhancement procedures can be implemented using either the Fourier
transform approach of Chap. 7 or the image domain procedures of this chapter. Which
option to use depends upon several factors such as available software, familiarity with
each method including its limitations and idiosynchrasies, and ease of use. A further
consideration relates to computer processing time. This last issue is pursued here
in order to indicate, from a cost viewpoint, when one method should be chosen in
favour of the other.

Both the Fourier transform, frequency domain process and the template approach
consist only of sets of multiplications and additions. No other mathematical opera-
tions are involved. It is sufficient, therefore, from the point of view of cost, to make a
comparison based upon the number of multiplications and number of additions nec-
essary to achieve a result. Here we will ignore the additions since they are generally
faster than multiplications for most computers and also since they are comparable in
number to the multiplications involved.

For an image of K ×K pixels (only a square image is considered for simplicity)
and a template of size M × N the total number of multiplications necessary to
evaluate (5.1) for every image pixel (ignoring any difficulties with the edges of the
image) is

NC = MNK2 (5.5a)

From the material presented in Sect. 7.8.4 it can be seen that the number of (complex)
multiplications required in the frequency domain approach is,

NF = 2K2log2K + K2 (5.5b)
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Table 5.1. Time comparison of geometric enhancement by template operation compared with
the Fourier transformation approach – based upon multiplication count comparison, described
by (5.6) in which the added cost of complex multiplication is ignored

A cost comparison therefore is

NC

NF

= MN/(2log2K + 1) (5.6)

When this figure is less than unity it is more economical to use the template operator
approach. Otherwise the Fourier transformation procedure is more cost-effective.
Clearly this does not take into account program overheads (such as the bit shuffling
required in the frequency domain approach, how data is buffered into computer
memory from disc for processing) and the added cost of complex multiplications;
however it is a reasonable starting point in choosing between the methods.

Table 5.1 contains a number of values of NC/NF for various image and template
sizes, from which it is seen that, provided a 3 × 3 template will implement the
enhancement required, then it is always more cost-effective than enhancement based
upon Fourier transformation. Similarly, a non isotropic 3 × 5 template is more cost-
effective for practical image sizes. However the spatial frequency domain technique
will be economical if very large templates are needed, although only marginally so
for large images.

As a final comment in this comparison it should be remarked that the frequency
domain method is able to implement processes not possible (or at least not viable)
with template operators. Removal of periodic noise is one example. This is particu-
larly simple in the spatial frequency domain but requires unduly complex templates
or even nonlinear operators (such as median filtering) in the image domain. Notwith-
standing these remarks the template approach is a popular one since often 3 × 3 and
5 × 5 templates are sufficient to achieve desired results.
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5.5
Image Smoothing (Low Pass Filtering)

5.5.1
Mean Value Smoothing

Images can contain random noise superimposed on the pixel brightness values owing
to noise generated in the sensors that acquire the image data, systematic quantisation
noise in the signal digitising electronics and noise added to the video signal during
transmission. This will show as a speckled ‘salt and pepper’ pattern on the image in
regions of homogeneity; it can be removed by the process of low pass filtering or
smoothing, unfortunately usually at the expense of some high frequency information
in the image. To smooth an image a uniform template in (5.1) is used with entries

t (m, n) = 1/MN for all m, n

so that the template response is a simple average of the pixel brightness values
currently within the template, viz

r(i, j) = 1

MN

M∑
m=1

N∑
n=1

φ(m, n) (5.7)

The pixel at the centre of the template is thus represented by the average brightness
level in a neighbourhood defined by the template dimensions. This is an intuitively
obvious template for smoothing and is equivalent to using running averages for
smoothing time series information.

It is evident that high frequency information such as edges will also be averaged
and lost. This loss of high frequency detail can be circumvented somewhat if a
threshold is applied to the template response in the following manner,

Let

�(i, j) = 1

MN

M∑
m=1

N∑
n=1

φ(m, n)

then

r(i, j)=�(i, j) if |φ(i, j) − �(i, j)| < T

=φ(i, j) otherwise

where T is a prespecified threshold. T could be determined a priori based upon
knowledge of or an estimate of scene signal to noise ratio.

Eliason and McEwan (1990) recommend choosing the threshold as a multiple
of the standard deviation of brightness within the template window. This provides
better noise removal in homogeneous regions while allowing better preservation of
edges and other valid high spatial frequency detail.

A simple illustration of image smoothing by averaging over a template, both
with and without the application of a threshold, is given in Fig. 5.4. For clarity this
is based upon a hypothetical one dimensional image, or alternatively a single line of
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Fig. 5.4. Illustration of the effect of 3 × 1 averaging across a single line of image data with
and without thresholding. Note, thresholding preserves edges while reducing noise. 1 original
image, 2 3 × 1 smoothing, 3 3 × 1 smoothing with threshold of 1

image data, with which a 3 × 1 template is used. In this manner the actual numerical
modification of pixel brightness values can be observed,

In principle, templates of any shape and size can be used. Larger templates
give more smoothing (and greater loss of high frequency detail) whereas horizontal
rectangular templates will smooth horizontal noise but leave noise and high frequency
detail in the vertical direction relatively unaffected by comparison. In Fig. 5.5 several
different smoothing templates have been applied to a Landsat multispectral scanner
infrared image.

Commonly, smoothing by template methods is referred to as box car filtering.
When based upon (5.7) it is also called mean value smoothing, or averaging.

5.5.2
Median Filtering

Disadvantages of the thresholding method for avoiding edge deterioration are that it
adds to the computational cost of the smoothing operation and T must be determined.
An alternative technique for smoothing in which the edges in an image are maintained
is that of median filtering. In this the pixel at the centre of the template is given the
median brightness value of all the pixels covered by the template – i. e. that value
which has as many values higher and lower. (For example, the median of 4, 6, 3, 7,
9, 2, 1, 8, 8 is 6, whereas the mean is 5.3). Figure 5.6 shows the effect of median
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Fig. 5.5. Examples of mean value smoothing of a Landsat multispectral scanner infrared
(band 7) image. a Original; b 3 × 3 smoothed version; c 3 × 1 smoothed version; d 5 × 5
smoothed version
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Fig. 5.6. Comparison of simple averaging and median filtering of a single line of image data.
1 original image, 2 3 × 1 smoothing, 3 3 × 1 median filtering

filtering on a single line of image data compared with simple box car averaging,
which uses the mean of pixel brightness values. Again, it can be seen that most of
the original edge is preserved.

An application for which median filtering is well suited is the removal of impulse-
like noise. This is because pixels corresponding to noise spikes are atypical in their
neighbourhood and will be replaced by the most typical pixel in that neighbourhood.
Figure 5.7 gives an example of median filtering on an image with added black and
white impulsive noise.

Finally it should be noted that median filtering is not a linear function of the
brightness values of the image pixels. Consequently it is not a convolution operation
in the sense described in Sect. 5.3.

5.6
Edge Detection and Enhancement

Edge enhancement is a particularly simple and effective means for increasing ge-
ometric detail in an image. It is performed by first detecting edges and then either
adding these back into the original image to increase contrast in the vicinity of an
edge, or highlighting edges using saturated (black, white or colour) overlays on
borders.
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Fig. 5.7. Illustration of the effect of median filtering on an image which contains impulsive
noise. a Original image; b Image with noise; c Filtered image

There are essentially three economical techniques for detecting edges using image
domain techniques. They are

(i) by using an edge detecting template,
(ii) by calculating spatial derivatives, or
(iii) by subtracting a smoothed image from its original.

These three approaches are treated in the following sections.
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5.6.1
Linear Edge Detecting Templates

A 3 × 3 template that detects vertical edges in image data is

(5.8a)

As can be inferred from its structure it computes a value for the central pixel under
the template that is the accumulated difference horizontally between pixels on three
adjacent rows. To see this, consider a region of an image which is basically dull
(brightness value 2) into which protrudes a bright object (brightness value 8) as
depicted in Fig. 5.8a. Application of the template yields the responses shown in
Fig. 5.8b, in which the vertical edge between the object and background has been
detected but not the horizontal edge. Note that the edge is defined by two columns
of pixels, one on either side of the true edge position. A threshold would normally
be applied to the template response (say 9 in the case of Fig. 5.8) to define the edge
pixels.

Templates for detecting edges in other orientations are:

(5.8b)

Clearly all four 3 × 3 templates have to be applied to an image to detect its edges
in all orientations. This requires four passes over the image data, computing each
template response for each pixel.At the completion of all processing the four template
responses for each pixel are compared and the pixel labelled (as an edge in a particular
direction) according to the largest template response provided that the response is

Fig. 5.8. Image a and edges detected by a vertically sensitive template b; Dots indicate
indeterminate edge responses for this example



5.6 Edge Detection and Enhancement 121

also above a user specified threshold. Choosing a threshold too low will lead to many
false edge counts. These contribute to noise in the processed image. Conversely, if
the threshold is set too high, there will be little continuity in the detected edges.

5.6.2
Spatial Derivative Techniques

If an image consists of a continuous brightness function of a pair of continuous
coordinates, x and y, say φ(x, y), then a vector gradient can be defined in the image
according to

∇φ(x, y) = ∂

∂x
φ(x, y)i + ∂

∂y
φ(x, y)j (5.9)

where i, j are a pair of unit vectors. The direction of the vector gradient is the
direction of maximum upward slope and its amplitude is the value of the slope. For
edge detection operations usually only the magnitude of the gradient, defined by

|∇| =
√

∇2
1 + ∇2

2 (5.10a)

is retained, in which

∇1 = ∂

∂x
φ(x, y) ∇2 = ∂

∂y
φ(x, y) (5.10b)

The direction of the gradient is usually of interest only in contouring applications or
in determining aspect in digital terrain models.

5.6.2.1
The Roberts Operator

For digital image data, in which x and y are discrete, the continuous derivatives in
(5.10) are replaced by differences. For example, it is possible to define

∇1 = φ(i, j) − φ(i + 1, j + 1) (5.11a)

and

∇2 = φ(i + 1, j) − φ(i, j + 1) (5.11b)

which are the discrete components of the vector derivative at the point i + 1
2 , j + 1

2 ,
in the diagonal directions. This estimate of gradient is called the Roberts operator,
and is by definition associated with the pixel i, j .

Application of the Roberts operator to the model image at Fig. 5.8a yields the
results shown in Fig. 5.9a, in which it will be seen that both horizontal and vertical
edges are detected, as will be diagonal edges. Since this procedure computes a local
gradient it is necessary to choose a threshold value above which edge gradients
are said to occur. This is usually chosen with experience of a particular image.
Frequently however it is useful to produce gradient maps in which pixels, for which
the local gradient lies within prespecified upper and lower bounds, are displayed.
Conventionally, the responses are placed to the left and upper sides of the edges.
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Fig. 5.9. Response of a the Robert’s operator and b the Sobel operator to the model image
data of Fig. 5.8a. Dots are indeterminate responses from edge pixels

5.6.2.2
The Sobel Operator

A better edge estimator than the Roberts operator is the Sobel operator, which com-
putes discrete gradient in the horizontal and vertical directions at the pixel location
i, j . For this, which is clearly more costly to evaluate, the orthogonal components of
gradient are

∇1 = {φ(i − 1, j + 1) + 2φ(i − 1, j) + φ(i − 1, j − 1)}
− {φ(i + 1, j + 1) + 2φ(i + 1, j) + φ(i + 1, j − 1)} (5.12a)

and

∇2 = {φ(i − 1, j + 1) + 2φ(i, j + 1) + φ(i + 1, j + 1)}
− {φ(i − 1, j − 1) + 2φ(i, j − 1) + φ(i + 1, j − 1)} (5.12b)

Applying this to the example of Fig. 5.8a produces the responses shown in Fig. 5.9b.
Again, both horizontal and vertical edges are detected as will be edges on a diagonal
slope. As before, a threshold on the responses is generally chosen to allow an edge
map to be produced in which small responses, resulting from noise or minor gradients,
are suppressed. Also gradient maps can be produced illustrating regions in which the
local slope lies within user specified bounds.

It can be seen that the Sobel operator is equivalent to simultaneous application
of the templates:

5.6.2.3
The Prewitt Operator

The template of (5.8a) effectively implements a spatial derivative in the horizon-
tal direction. If its vertical counterpart in (5.8b) is applied as well, and the results
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combined in (5.10a), then the magnitude of a spatial derivative is generated. This is
referred to as the Prewitt operator.

5.6.3
Thinning, Linking and Border Responses

Should an edge map be of interest (or indeed a line map using the methods of Sect. 5.7)
then the product resulting from using the above procedures is likely to contain many
double width, or wider lines, such as those seen in Figs. 5.8 and 5.9 and may have
lines with many breaks. Such a map can be tidied up by thinning edges or lines that
are too thick and by linking together segments that appear to belong to the same edge
but are separated by a break. Thinning and linking are not commonly employed in
remote sensing image analysis. However should they require consideration available
techniques will be found in Babu and Nevatia (1980), Paul and Shanmugan (1982)
and Castleman (1996).

In the examples of Figs. 5.8 and 5.9 border pixels for which detector responses
could not be determined were simply left unprocessed. Since images encountered in
remote sensing are frequently much larger than 100 × 100 pixels, this is a common
practice as the loss of borders is not all that significant. A more elegant means for
treating edge pixels however is to create artificial borders of pixels around the image.
These are used in the generation of edge pixel responses but are not themselves
replaced by a template response. The values given to the artificial border pixels
can be taken simply from the adjacent image pixels or, more acceptably from a
theoretical viewpoint, they can be taken from the pixels on the extreme opposite
edge of the image if only small templates are used. This is based upon the concept,
drawn from digital signal processing, that the image, being spatially discretised or
sampled, should be regarded as one period both horizontally and vertically of an
infinite periodic replication of the array of pixels.

5.6.4
Edge Enhancement by Subtractive Smoothing (Sharpening)

While treated in the context of edge enhancement this technique really leads to the
enhancement of all high spatial frequency detail in an image including edges, lines
and points of high gradient. It is probably better regarded therefore as a sharpening
technique.

A smoothed image retains all low spatial frequency information but has its high
frequency features, such as edges and lines, attenuated (unless edge preservation
procedures such as thresholding are employed). Consequently, if a smoothed image
is subtracted from its original the resultant difference image will have only the edges
and lines substantially remaining. This is illustrated for a single line of image data in
Fig. 5.10. After the edges are determined in this manner, the difference image can be
added back to the original (in varying proportions) to give an edge enhanced image.
This is also illustrated in Fig. 5.10.



124 5 Geometric Enhancement Using Image Domain Techniques

Fig. 5.10. Edge enhancement by subtractive smoothing. a Original line of image data, along
with smoothed version; b Original line of data minus the smoothed version to leave ‘edges’
detected; c Addition of ‘edges’ (general high frequency detail) back to the original image to
provide a sharpened version
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The difference operation to create a high spatial frequency image can give neg-
ative brightness values as seen in Fig. 5.10b. Provided the image is not displayed,
this produces no problems. For display however it is common to scale the difference
image such that a zero difference is displayed as mid-grey with positive differences
towards white and negative differences towards black. When the difference image is
added back to the original, negative brightnesses can again result. Again, this can be
handled by level shifting or scaling, or simply by setting negative brightness values
to zero.

Figure 5.11 shows the sharpening technique of subtractive smoothing applied to
bands 4, 5 and 7 of a Landsat multispectral scanner image and the effect this has on
the colour composite formed from these bands. As noted the sharpened image has
clearer high frequency detail; however there is a tendancy for noise to be enhanced,
as might be expected.

5.7
Line Detection

5.7.1
Linear Line Detecting Templates

Line features such as rivers and roads in satellite images can be detected as pairs of
edges if they are more than one pixel wide or alternatively, if they are a single pixel
in width, they can be detected using the following line detecting templates:

These templates seem not to have been used to any great extent in remote sensing
image processing since lines, in addition to edges, are enhanced using the gradient
and subtractive smoothing techniques of Sect. 5.6. Moreover, with sensor resolutions
available up to 1982, not many single pixel width linear features have been apparent
in imagery. With resolutions in the range of 10 m to 30 m however, cultural features
such as roads, could be amenable to detection using line related templates.

5.7.2
Non-linear and Semi-linear Line Detecting Templates

The line detecting templates of Sect. 5.7.1 are regarded as linear since their con-
volution with image data is a linear mathematical operation. Some nonlinear line
detecting template operations have also been proposed. To describe these it is of
value to denote a 3 × 3 neighbourhood of pixels in an image as
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Fig. 5.11. Illustration of subtractive smoothing as an image sharpening procedure
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A1 B1 C1

A2 B2 C2

A3 B3 C3

A nonlinear line detector algorithm, proposed by Rosenfeld and Thurston (1971),
establishes pixel B2 as part of a dark vertical line if

Ai, Ci > Bi

by a prespecified threshold. Similar expressions apply for lines of other orientations
and for bright lines on dark backgrounds.

Vanderbrug (1976) has proposed what he calls a semilinear detector. For the pixel
array above this determines B2 as part of a dark vertical line if

3∑
i=1

Ai and
3∑

i=1

Ci >

3∑
i=1

Bi

by some prespecified threshold.
Gurney (1980) has noted that the semilinear detector works better than the non

linear algorithm although line thickening results and computational cost is high.
These disadvantages are obviated by the use of the additional constraint with the
semilinear algorithm:

A2 > B2 and C2 > B2

Gurney also discusses means by which the thresholds for the semilinear detector
can be effectively established.

5.8
General Convolution Filtering

It is clear that smoothing, edge and line detection represent just particular ways of
defining the template entries in (5.1) and that more general spatial filtering operations
could be defined by loading the template in different fashions. For example, edge
enhancement by subtractive smoothing treated in Sect. 5.6.4 could be implemented
by the single template

where a=1/9. This template implements a high spatial frequency boosting.
By expanding the size of the template it is possible to determine detectors that are

sensitive to edges and lines in other than the four common orientations. In addition,
templates can be used for recognition of large objects in imagery, where the templates
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are loaded with zeros, except for those locations corresponding to the shape and
orientation of an object of interest. In this case the procedure is referred to as template
matching and is more akin to correlation than convolution (Rosenfeld, 1978).

5.9
Detecting Geometric Properties

A number of procedures can be devised that allow geometric properties in images
to be detected and measured. While they are not geometric enhancement operations
as such, they share the common theme with the methods treated previously in this
chapter in that they require neighbourhood operations for their computation.

5.9.1
Texture

We all know what texture is – we can clearly see the different textures present in
images, but quantitative characterisation of texture is not simple. First, it is necessary
to find a measure that somehow captures the spatial properties of a scene that reveal
texture. A long-standing measure is the grey level co-occurrence matrix (GLCM)
defined in the following way (Haralick, 1979). To make the development simple,
imagine we want to detect a component of texture just in the horizontal direction in a
particular region of an image. To do this we could see how often two particular grey
levels in the image occur in that direction in the selected region, separated by a given
distance.We could then look for the same sort of behaviour in other directions, such as
vertically and diagonally, in which case there would be four matrices for any chosen
pixel separation. This suggests that what we are looking for can be characterised by
some form of repeating pattern which, of course, is what texture is.

Let g(φ1, φ2|h, θ) be the relative occurrence of pixels with grey levels φ1 and
φ2 spaced h pixels apart, in the direction θ – here chosen as horizontal. Relative
occurrence is the number of times each grey level pair is counted divided by the
total possible number of grey level pairs. The GLCM for a region, defined by a user-
specified window, is the matrix of those measurements over all grey level pairs. If
there are L brightness values possible then the GLCM will be an L×L matrix. Note
there will be one GLCM for each of the chosen values of h and θ . Given that L can
be quite large for some sensors (L = 1024 for 10 bit data) sometimes the brightness
value range is either restricted or its dynamic range is reduced by considering the
co-occurrence of brightness value in ranges.

There will be as many GLCMs as there are values chosen for h and θ . Often h

is used as a variable to see whether texture exists on a local or more regional scale
in an image. On the other hand the GLCMs computed for various values of θ are
either kept separate to see whether the texture is orientation dependent, or they are
averaged on the assumption that texture will not vary significantly with orientation.

Once we have the GLCMs for the regions of interest it is then appropriate to set
up a singe metric computed from each matrix to use as a texture measure. A range
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of measures is possible one of which is to describe the entropy of the information
contained in the GLCM, defined by

H = −
L∑

φ1=1

L∑
φ2 =1

g(φ1, φ2| h, θ) log [g(φ1, φ2| h, θ)]

Entropy will be highest when all entries in the GLCM are equi-probable, ie when
the image is not obviously textured, and will be low when there is a large disparity
in the probabilities, as might be expected when significant texture is present.

Another measure is energy which is the sum of the squared elements of the
GLCM. It will be small when the GLCM elements are small, indicating low texture.

Figure 5.12a shows an ETM+ image of a region surrounding Canberra, the Fed-
eral Capital of Australia. Four small regions are indicated as “fields” by white rectan-
gles, within which just the horizontal GLCMs were computed for a range of values of
lag, h. Those calculations used just the first ETM+ band – i.e. the visible blue, which
was reduced in dynamic range to 32 bits before any calculations were performed.

Forest
Field 1

Surb
Field 2

Mt
Field 3

Grass
Field 4

Fig. 5.12a. Portion of an ETM+ image in the region surrounding Canberra, showing four
fields used as regions for the computation of grey level co-occurrence matrices and subsequent
texture properties
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Fig. 5.12. b Entropy as a function of pixel separation (or lag); c Energy as a function of pixel
separation

Figures 5.12b and c show the variation of entropy and energy with lag. Two points are
noteworthy. First, entropy increases with lag and energy decreases with lag, indicat-
ing that the texture is falling away at larger spacings. Secondly the four cover types
chosen – grass, forest, mountain and suburban are separable by their texture, with
grassland exhibiting the strongest texture. The suburban and mountainous regions
are seen to be low in texture by comparison, and are comparable to each other for
the range of scales chosen. Note that entropy and energy behave oppositely to each
other as might be expected.



5.9 Detecting Geometric Properties 131

5.9.2
Spatial Correlation – The Semivariogram

The semivariogram is a useful means for describing the spatial properties of an image
(or the scene being imaged) in a specified direction. It is constructed in the following
manner, by computing the average semivariance in the given direction according to
(Curran, 1988)

S2 = 1

2m

m∑
i=1

[φ(i) − φ(i + h)]2

In this expression h represents the distance, or lag, between two pixels whose bright-
ness values, φ(i) and φ(i +h) are subtracted and then squared. By moving along the
given direction by pixel (i = 1, 2, . . . m) one half of the averaged squared distance
is computed, as indicated in the formula; m is the total number of pairs which are
separated by h. By varying the lag, h, a graph of the average semivariance versus lag
can be constructed as depicted in Fig. 5.13. That graph is called a semivariogram.
In a sense the semivariance measure is detecting how dissimilar pixel brightnesses
are, on the average, when separated by a lag h. If there is spatial periodicity in the
landscape then the semivariogram will reflect that behaviour as well.

The semivariogram for the image of Fig. 5.12a is shown in Fig. 5.13 for the four
regions chosen.

Several properties can be derived from the semivariogram; these are best illus-
trated by the idealised form shown in Fig. 5.14, and include the sill (its asymptotic
maximum value, if it exists), the nuggett variance (the extrapolated point of inter-
section with the ordinate), sometimes taken to indicate the noise properties of the
image since it represents variance that is not related to the spatial properties of the
scene, and the range, which is the lag or separation at which the sill is reached.
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Fig. 5.13. Semivariogram for the image of Fig. 5.12a
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Fig. 5.14. The idealised semivariogram for a region in which there is no spatial periodicity

5.9.3
Shape Detection

Recognition of shapes in image data has not been considered in remote sensing as
extensively as it has in object recognition exercises, such as robot vision. Presumably
this is because the resolution generally available in the past has been insufficient to
define shape with any degree of precision. However with ground resolution elements
better than 20 to 30 m in imagery, shapes such as those of rectangular fields in
agriculture, and circular pivotal irrigation systems are quite well defined.

Shape recognition can be carried out using template techniques, in which the
templates are chosen according to the shape of interest (Hord, 1982). The operation
required is one of correlation and not the convolution operation of (5.4). Correlation
is defined by that same expression but with additions in place of subtractions. A
major difficulty with this approach, which as a consequence renders the technique
of limited value in practice, is that the template must match not only the shape of
interest, but also its size and orientation. Other methods therefore are often employed.
These include the adoption of shape factors (Underwood, 1970), moments of area
(Pavlidis, 1978) and Fourier transforms of shape boundaries (Pavlidis, 1980). In each
of these the shape must first be delineated from the rest of the image. This is achieved
by edge and line detection processes.

References for Chapter 5

The template techniques that form the basis of much of the material presented in this chapter
are treated also by Castleman (1996), Moik (1980) and Hord (1982). Castleman also provides a
detailed linear systems theory approach to filter design. Gonzalez andWoods (1992) present the
method in a vector formulation, noting that the convolution operation in (5.1) can be expressed
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into an edge sub-space implies edges in the image of the pixel currently being assessed, and
so on. This is assessed in terms of the vector angle between the image pixel vector and the
subspace basis vectors (template entries).

Gradient methods are covered also by Moik (1980), Gonzalez and Woods (1992), Hord
(1982) and to an extent by Castleman (1996). Gonzalez and Woods also include discussions
on the use of thresholds applied to the response of gradient operators. Vanderbrug (1976) and
Gurney (1980) consider the properties of nonlinear and semilinear line detecting templates.

Paine and Lodwick (1989) provide a good discussion of the application of edge detection
methods, while Brzakovic et al. (1991) consider the use of rule-based methods to assist in
edge detection when a number of templates is involved. While the edge detection methods
treated here have been applicable only to single bands of data, Cumani (1991) and Drewnick
(1994) have proposed operators for use on multispectral data.

K.R. Babu and R. Nevatia, 1980: Linear Feature Extraction and Description. Computer Graph-
ics and Image Processing, 13, 257–269.

E.O. Brigham, 1974: The Fast Fourier Transform, N.J. Prentice-Hall.
E.O. Brigham, 1988: The Fast Fourier Transform and its Applications, N.J. Prentice-Hall.
D. Brzakovic, R. Patton and R.L. Wang, 1991: Rule-based Multitemplate Edge Detector.

CVGIP: Graphical Models and Image Processing, 53, 258–268.
K.R. Castleman, 1996: Digital Image Processing, N.J. Prentice-Hall.
A. Cumani, 1991: Edge Detection in Multispectral Images. CVGIP: Computer Models and

Image Processing, 53, 40–51.
C. Drewnick, 1994: Multispectral Edge Detection. Some Experiments on Data from Landsat

TM. Int. J. Remote Sensing, 15, 3743–3765.
E.M. Eliason and A.S. McEwan, 1990: Adaptive Box Filters for Removal of Random Noise

from Digital Images. Photogrammetric Engineering and Remote Sensing, 56, 453–458.
R.C. Gonzalez and R.E. Woods, 1992: Digital Image Processing, Mass., Addison-Wesley.
C.M. Gurney, 1980: Threshold Selection for Line Detection AIgorithms. IEEE Trans. Geo-

science and Remote Sensing, GE-18, 204–211.
R.M. Haralick, 1979: Statistical and Structural Approaches to Texture. Proc. IEEE, 67, 786–

802.
R.M. Hord, 1982: Digital Image Processing of Remotely Sensed Data, N.Y. Academic.
C.D. McGillem and G.R. Cooper, 1984: Continuous and Discrete Signal and SystemsAnalysis,

2e, N.Y., Holt, Reinhard and Winston.
J.G. Moik, 1980: Digital Processing of Remotely Sensed Images, N.Y., Academic.
S.H. Paine and G.D. Lodwick, 1989: Edge Detection and Processing of Remotely Sensed

Digital Images. Photogrammetria (PRS), 43, 323–336.
C. Paul and K.S. Shanmugan, 1982: A Fast Thinning Operator. IEEE Trans. Systems, Man,

Cybernetics, SMC-12, 567–569.
T. Pavlidis, 1978: A Review of Algorithms for Shape Analysis. Computer Graphics and Image

Processing, 7, 243–258.
T. Pavlidis, 1980: Algorithms for Shape Analysis of Contours and Waveforms. IEEE Trans.

Pattern Analysis and Machine Intelligence, PAMI-2, 301–312.
A. Rosenfeld, 1978: Image Processing and Recognition, Technical Report 664, Computer

Vision Laboratory, University of Maryland.



134 5 Geometric Enhancement Using Image Domain Techniques

A. Rosenfeld and M. Thurston, 1971: Edge and Curve Detection for Visual Scene Analysis,
IEEE Trans. Computers, C-20, 562–569.

E.E. Underwood, 1970: Quantitative Stereology, Mass., Addison-Wesley.
G.J. Vanderbrug, 1976: Line Detection in Satellite Imagery, IEEE Trans. Geoscience Elec-

tronics, GE-14, 37–44.

Problems

5.1 The template entries for line and edge detection sum to zero whereas those for smoothing
do not. Why do you think that is so?

5.2 Repeat the example of Fig. 5.10 but by using a [5 × 1] smoothing operation in part (a),
rather than [3 × 1] smoothing.

5.3 Repeat the example of Fig. 5.10 but by using a [3 × 1] median filtering operation in part
(a) rather than [3 × 1] mean value smoothing.

5.4 An alternative smoothing process to median and mean value filtering using template
methods is known as modal filtering. In this approach a pixel at the centre of the template
neighbourhood is replaced by the brightness value that occurs most frequently in the neigh-
bourhood.Apply [3×1] and [5×1] modal filters to the image data of Fig. 5.6. Note differences
in the results compared with mean value and median smoothing, particularly around the edges.

5.5 Suppose S is a template operation that implements smoothing and O is the template
operator that leaves an image unchanged (see Sect. 5.8). Then an edge enhanced image created
by the subtractive smoothing approach of Sect. 5.6.4 can be expressed according to

New image = O (old image) + O (old image) − S (old image)

Rewrite this expression to incorporate two user defined parameters α and β that will cause the
formula to implement any of smoothing, edge detection or edge enhancement.

5.6 (Requires vector algebra background). Show that template methods for line and edge
detection can be expressed as the scalar product of a vector composed from the template entries
and a vector formed from the neighbourhood of pixels currently covered by the template. Show
how the angle between the template and pixel vectors can be used to assess the edge or line
feature a current pixel most closely corresponds to. (See Gonzalez and Woods (1992)).

5.7 The following kernel is sometimes convolved with image data. What operation will it
implement?

5.8 Consider the middle pixel shown in the figure below and calculate its new value if

(i) a 3 × 3 median filtering is applied,
(ii) a 3×3 template which performs edge enhancement by subtractive smoothing is applied,
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(iii) a 3 × 1 image smoothing template with a threshold 2 is applied,
(iv) the Sobel operator is applied for edge detection.

5.9 Image smoothing can be performed by template operators that implement averaging or
median filtering. Compare the methods. particularly as they affect edges. Would you expect
median filtering to be useful in edge enhancement by the technique of subtracting a smoothed
image from the original?

5.10 If a 3 × 3 smoothing template is applied to an image twice in succession, how many
neighbours will have played a part in modifying the brightness of a given pixel? Design a
single template to achieve the same result in one pass.



6
Multispectral Transformations
of Image Data

The multispectral or vector character of most remote sensing image data renders it
amenable to spectral transformations that generate new sets of image components
or bands. These components then represent an alternative description of the data, in
which the new components of a pixel vector are related to its old brightness values in
the original set of spectral bands via a linear operation. The transformed image may
make evident features not discernable in the original data or alternatively it might
be possible to preserve the essential information content of the image (for a given
application) with a reduced number of the transformed dimensions. The last point
has significance for displaying data in the three dimensions available on a colour
monitor or in colour hardcopy, and for transmission and storage of data.

The role of this chapter is to present image transformations of value in the en-
hancement of remote sensing imagery, although some also find application in pre-
conditioning image data prior to classification by the techniques of Chaps. 8 and 9.
The techniques covered, which appeal directly to the vector nature of the image,
include the principal components transformation and so-called band arithmetic. The
latter includes the creation of ratio images. Some specialised transformations, such
as the Kauth-Thomas tasseled cap transform are also treated.

6.1
The Principal Components Transformation

The multispectral or multidimensional nature of remote sensing image data can be
accommodated by constructing a vector space with as many axes or dimensions as
there are spectral components associated with each pixel. In the case of Landsat
Thematic Mapper data it will have seven dimensions while for SPOT HRV data
it will be three dimensional. For hyperspectral data there may be several hundred
axes. A particular pixel in an image is plotted as a point in such a space with co-
ordinates that correspond to the brightness values of the pixels in the appropriate
spectral components. For simplicity the treatment to be developed in this topic will
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be based upon a two dimensional multispectral space (say visible red and infrared)
since the diagrams are then easily understood and the mathematical detail is readily
assimilated. The results derived however are perfectly general and apply to data of
any dimensionality.

6.1.1
The Mean Vector and Covariance Matrix

The positions of pixel points in multispectral space can be described by vectors,
whose components are the individual spectral responses in each band. Strictly, these
are vectors drawn from the origin to the pixel point as seen in Appendix D, but this
concept is not used explicitly. Consider a mu1tispectral space with a large number of
pixels plotted in it as shown in Fig. 6.1, with each pixel described by its appropriate
vector x. The mean position of the pixels in the space is defined by the expected
value of the pixel vector x, according to

m = E(x} = 1

K

K∑
k=1

xk (6.1)

where m is the mean pixel vector and the xk are the individual pixel vectors of total
number K; E is the expectation operator.

While the mean vector is useful to define the average or expected position of the
pixels in multispectral vector space, it is of value to have available a means by which
their scatter or spread is described. This is the role of the covariance matrix which is
defined as

Σx = E{(x − m)(x − m)t } (6.2a)

in which the superscript ‘t’ denotes vector transpose. (See Appendix D).
An unbiased estimate of the covariance matrix is given by

Σx = 1

K − 1

K∑
k=1

(xk − m)(xk − m)t (6.2b)

The covariance matrix is one of the most important mathematical concepts in
the analysis of multispectral remote sensing data, as a result of which it is of value

Fig. 6.1. Two dimensional multispectral space show-
ing the individual pixel vectors and their mean posi-
tion, as defined by m, the mean vector
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Fig. 6.2. Two dimensional data showing no correlation between components a and high
correlation between components b

to consider some sample calculations to enable its properties to be emphasised. In
these it will be seen that if there is correlation between the responses in a pair of
spectral bands the corresponding off-diagonal element in the covariance matrix will
be large by comparison to the diagonal terms. On the other hand, if there is a little
correlation, the off-diagonal terms will be close to zero. This behaviour can also be
described in terms of the correlation matrix R whose elements are related to those
of the covariance matrix by

�ij = vij /
√

viivjj (6.3)

where �ij is an element of the correlation matrix and vij etc. are elements of the
covariance matrix; vii and vjj are the variances of the ith and j th bands of data. The
�ij describe the correlation between band i and band j .

Consider the two, two-dimensional sets of data shown in Fig. 6.2. That in Fig. 6.2a
shows little correlation between the two components: in other words, both compo-
nents are necessary to describe where a pixel lies in the space. The data shown in
Fig. 6.2b however exhibits a high degree of correlation between its two components,
evident in the elongated spread of the data at an angle to the axes. One dimension on
its own is almost sufficient to predict where a pixel lies in the space, and an increase
or decrease in either component suggests a corresponding increase or decrease in
the other. This is not the case with Fig. 6.2a. In terms of the individual images cor-
responding to the bands of multispectral data, highly correlated bands as depicted
in Fig. 6.2b would yield image components very similar in appearance. Where one
is dark the other will be dark and so on. The image components corresponding to
Fig. 6.2a, however, would display no similar consistently common behaviour. Prob-
lem 6.7 shows a number of other situations of high and low correlation. Importantly,
if the data is scattered in an elongated fashion, as seen in Fig. 6.2b, but the directions
of major scatter are parallel to the coordinate (measurement) axes, then there is little
correlation among the measurements.

Table 6.1 shows a sample set of hand calculations undertaken to find the covari-
ance and correlation matrices for Fig. 6.2a. Normally this would be carried out by
computer, particularly for data with higher dimensionality. As noted from the corre-



140 6 Multispectral Transformations of Image Data

Table 6.1. Computation of covariance and correlation matrices for Fig. 6.2a

The mean vector is m =
[

3.00
2.33

]

lation matrix there is no correlation between the individual components of the data,
a fact which is evident also in the zero off-diagonal entries in the covariance matrix.
The entry of 2.40 in the upper left hand corner of the covariance matrix signifies that
the data points have a variance of 2.40 along the horizontal axis, or a standard devia-
tion of 1.55 about the mean. Similarly, the variance and standard deviation vertically
are 1.87 and 1.37 respectively.

For the data in Fig. 6.2b, it is shown by a similar set of calculations to those in
Table 6.1 that

m =
[

3.50
3.50

]
Σx =

[
1.900 1.100
1.100 1.100

]

and

R =
[

1.000 0.761
0.761 1.000

]

Thus components 1 and 2 of the data in Fig. 6.2b are 76% correlated.
It should be noted that both the covariance and correlation matrices are symmet-

ric and that an image data set, in which there is no correlation between any of its
multispectral components, will have a diagonal covariance (and correlation) matrix.
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6.1.2
A Zero Correlation, Rotational Transform

It is fundamental to the development of the principal components transformation to
ask whether there is a new co-ordinate system in the multispectral vector space in
which the data can be represented without correlation; in other words, such that the
covariance matrix in the new co-ordinate system is diagonal. For a particular two
dimensional vector space such a new co-ordinate system is depicted in Fig. 6.3. If
the vectors describing the pixel points are represented as y in the new co-ordinate
system then it is desired to find a linear transformation G of the original co-ordinates,
such that

y = Gx = Dtx (6.4)

subject to the constraint that the covariance matrix of the pixel data in y space is
diagonal. Expressing G as Dt will make the comparison of principal components
with other transformation operations, treated later, much simpler.

In y space the covariance matrix is, by definition,

Σy = E{(y − my)(y − my)
t }

where my is the mean vector expressed in terms of the y co-ordinates. It is shown
readily that

my = E{y} = E{Dtx} = DtE{x} = Dtmx
1

Fig. 6.3. Illustration of a modified co-ordinate system in which the pixel vectors have uncor-
related components

1 E{Dtx} = 1
K

K∑
k=1

Dtxk = Dt 1
K

K∑
k=1

xk = Dtmx

i.e. Dt , being a matrix of constants, can be taken outside an expectation operator.
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where mx is the data mean in x space. Therefore

Σy = E{(Dtx − Dtmx)(D
tx − Dtmx)

t }
which can be written as

Σy =DtE{(x − mx)(x − mx)
t }D 2

i.e. Σy =DtΣxD (6.5)

where Σx is the covariance of the pixel data in x space. Since Σy must, by demand,
be diagonal, D can be recognised as the matrix of eigenvectors of Σx , provided D is
an orthogonal matrix. This can be seen from the material presented in Appendix D
dealing with the diagonalization of a matrix. As a result, Σy can then be identified
as the diagonal matrix of eigenvalues of Σx ,

Σy =

⎡
⎢⎢⎢⎢⎣

λ1 0
0 λ2

. . . . . .

λN

⎤
⎥⎥⎥⎥⎦

where N is the dimensionality of the data. Since Σy is, by definition, a covariance
matrix and is diagonal, its elements will be the variances of the pixel data in the
respective transformed co-ordinates. It is arranged such that λ1 > λ2 > . . . λN so
that the data exhibits maximum variance in y1, the next largest variance in y2 and so
on, with minimum variance in yN .

The principal components transform defined by (6.4) subject to the diagonal
constraint of (6.5) is also known as the Karhunen-Loève or Hotelling transform.

Before proceeding it is of value at this stage to pursue further the examples of
Fig. 6.2, to demonstrate the computational aspects of principal components analysis.
Recall that the original x space covariance matrix for the highly correlated image
data of Fig. 6.2b is

Σx =
[

1.90 1.10
1.10 1.10

]
To determine the principal components transformation it is necessary to find the

eigenvalues and eigenvectors of this matrix. The eigenvalues are given by the solution
to the characteristic equation

|Σx − λI | = 0, I being the identity matrix.

i.e.
∣∣∣∣1.90 − λ 1.10

1.10 1.10 − λ

∣∣∣∣ = 0

or λ2 − 3.0λ + 0.88 = 0

which yields λ = 2.67 and 0.33

2 Since [Aζ ]t = ζ tAt (reversed law of matrices). Note also [Aζ ]−1 = ζ−1A−1.
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As a check on the analysis it may be noted that the sum of the eigenvalues is
equal to the trace of the covariance matrix, which is the sum of its diagonal elements.

The covariance matrix in the appropriate y co-ordinate system (with principal
components as axes) is therefore

Σy =
[

2.67 0
0 0.33

]
Note that the first principal component, as it is called, accounts for 2.67/(2.67 +
0.33) ≡ 89% of the total variance of the data in this particular example. It is now
of interest to find the actual principal components transformation matrix G = Dt .
Note that this is the transposed matrix of eigenvectors of Σx . Consider first, the
eigenvector corresponding to λ1 = 2.67. This is the vector solution to the equation

[Σx − λ1I ] g1 = 0

with g1 =
[

g1 1
g2 1

]
≡ d t

1 for the two dimensional example at hand.

Substituting for Σxand λ1 gives the pair of equations

−0.77g1 1 + 1.10g2 1 = 0

1.10g1 1 − 1.57g2 1 = 0

which are not independent, since the set is homogeneous. It does have a non-trivial
solution however because the coefficient matrix has a zero determinant. From either
equation it can be seen that

g1 1 = 1.43g2 1 (6.6)

At this stage either g1 1 or g2 1 would normally be chosen arbitrarily, and then a
value would be computed for the other. However the resulting matrix G has to be
orthogonal so that G−1 ≡ Gt . This requires the eigenvectors to be normalised, so
that

g2
1 1 + g2

2 1 = 1 (6.7)

This is a second equation that can be solved simultaneously with (6.6) to give

g1 =
[

0.82
0.57

]
In a similar manner it can be shown that the eigenvector corresponding to λ2 = 0.33
is

g2 =
[−0.57

0.82

]
The required principal components transformation matrix therefore is

G = Dt =
[

0.82 −0.57
0.57 0.82

]t

=
[

0.82 0.57
−0.57 0.82

]
Now consider how these results can be interpreted. First of all, the individual

eigenvectors g1 and g2 are vectors which define the principal component axes in
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Fig. 6.4. Principal component axes for the data set of Fig. 6.2b; e1 and e2 are horizontal (x1)

and vertical (x2) direction vectors

terms of the original co-ordinate space. These are shown in Fig. 6.4: it is evident
that the data is uncorrelated in the new axes and that the new axes are a rotation of
the original set. For this reason (even in more than two dimensions) the principal
components transform is classed as a rotational transform.

Secondly, consider the application of the transformation matrix G to find the
positions (i.e., the brightness values) of the pixels in the new uncorrelated co-ordinate
system. Since y = Gx this example gives[

y1
y2

]
=
[

0.82 0.57
−0.57 0.82

] [
x1
x2

]
(6.8)

which is the actual principal components transformation to be applied to the image
data. Thus, for

x =
[

2
2

]
,

[
4
3

]
,

[
5
4

]
,

[
5
5

]
,

[
3
4

]
,

[
2
3

]
we find

y =
[

2.78
0.50

]
,

[
4.99
0.18

]
,

[
6.38
0.43

]
,

[
6.95
1.25

]
,

[
4.74
1.57

]
,

[
3.35
1.32

]
.

The pixels plotted in y space are shown in Fig. 6.5. Several points are noteworthy.
First, the data exhibits no discernable correlation between the pair of new axes (i.e.,
the principal components). Secondly, most of the data spread is in the direction of the
first principal component. It could be interpreted that this component contains most
of the information in the image. Finally, if the pair of principal component images are
produced by using the y1 and y2 component brightness values for the pixels, the first
principal component image will show a high degree of contrast whereas the second
will have limited contrast. By comparison to the first component, the second will
make use of only a few available brightness levels. It will be seen, therefore, to lack
the detail of the former. While this phenomenon may not be particularly evident for a
simple two dimensional example, it is especially noticeable in the fourth component
of a principal component transformed Landsat multispectral scanner image as can
be assessed in Fig. 6.6.
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Fig. 6.5. Pixel points located in (uncorrelated) principal components space

6.1.3
Examples – Some Practical Considerations

The material presented in Sect. 6.1.2 provides the background and rationale for
the principal components transform. By working through the numerical example in
detail the importance of eigenanalysis of the covariance matrix can be seen. However
when using principal components analysis in practice the user is not involved in this
level of detail. Rather only three steps are necessary, presuming software exists for
implementing each of those steps. These are, first, the assembling of the covariance
matrix of the image to be transformed according to (6.2). Normally, software will be
available for this step, usually in conjunction with the need to generate signatures
for classification as described in Chap. 8. The second step necessary is to determine
the eigenvalues and eigenvectors of the covariance matrix. Either special purpose
software will be available for this or general purpose matrix eigenanalysis routines
can be used. The latter are found in packages such as MATLAB, Mathematica and
Maple. At this stage the eigenvalues are used simply to assess the distribution of data
variance over the respective components.A rapid fall off in the size of the eigenvalues
indicates that the original band description of the image data exhibits a high degree
of correlation and that significant results will be obtained in the transformation to
follow.

The final step is to form the components using the eigenvectors of the covariance
matrix as the weighting coefficients. As seen in (6.4) (noting that G is a transposed
matrix of eigenvectors) and as demonstrated in (6.8), the components of the eigen-
vectors act as coefficients in determining the principal component brightness values
for a pixel as a weighted sum of its brightnesses in the original spectral bands. The
first eigenvector produces the first principal component from the original data, the
second eigenvector gives rise to the second component, and so on.

Figure 6.6a shows the four original bands of an image acquired by the Landsat
multispectral scanner for a small image segment in central Australia. The covariance
matrix for this image is
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Fig. 6.6. a Four Landsat multispectral scanner bands for the region of Andamooka in central
Australia; b The four principal components of the image segment; c (overleaf) Comparison
of standard false colour composite (band 7 to red, band 5 to green and band 4 to blue) with a
principal component composite (first component to red, second to green and third to blue)
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Fig. 6.6. c

Σx =

⎡
⎢⎢⎣

34.89 55.62 52.87 22.71
55.62 105.95 99.58 43.33
52.87 99.58 104.02 45.80
22.71 43.33 45.80 21.35

⎤
⎥⎥⎦

and its eigenvalues and eigenvectors are:

eigenvalues 253.44 7.91 3.96 0.89

eigenvector 0.34 −0.61 0.71 −0.06
components 0.64 −0.40 −0.65 −0.06
(vertically) 0.63 0.57 0.22 0.48

0.28 0.38 0.11 −0.88

The first principal component image will be expected therefore to contain 95% of
the data variance. By comparison, the variance in the last component is seen to be
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Fig. 6.7. Principal components applied to a highly correlated TM image (without the thermal
band). a Original TM bands; b Colour composite formed from TM bands 4, 3 and 2; c Colour
composite formed from PC3, PC2 and PC1; d Colour composite formed from PC4, PC3 and
PC2; e The full set of principal components.

negligible. It is to be expected that this component will appear almost totally as noise
of low amplitude.

The four principal component images for this example are seen in Fig. 6.6b in
which the information redistribution and compression properties of the transforma-
tion are illustrated. By association with Fig. 6.5 it would be anticipated that the later
components should appear dull and poor in contrast. The high contrasts displayed
are a result of a contrast enhancement applied to the components for the purpose of
display. This serves to highlight the poor signal to noise ratio.

Figure 6.6c shows a comparison of a standard false colour composite formed
from the original Landsat bands and a colour composite formed by displaying the
first principal component as red, the second as green and the third as blue. Owing
to the noise in the second and third components these were smoothed with a 3 × 3
mean value template first.

A second example of the principal components transformation is shown in
Fig. 6.7, this time based on the 6 reflective TM bands for a region in the North-
ern Territory of Australia. The covariance and correlation matrices for the image are:
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Σx =

⎡
⎢⎢⎢⎢⎢⎢⎣

874.98 550.56 698.00 335.54 858.15 551.21
550.56 363.82 454.79 230.30 558.88 358.38
689.00 454.79 580.63 288.11 747.97 471.72
335.54 230.30 288.11 722.46 742.35 387.61
858.15 558.88 747.97 742.35 1544.70 871.29
551.21 358.38 471.72 387.61 871.29 514.18

⎤
⎥⎥⎥⎥⎥⎥⎦

Rx =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.00 0.98 0.97 0.42 0.74 0.82
0.98 1.00 0.99 0.45 0.75 0.83
0.97 0.99 1.00 0.44 0.79 0.86
0.42 0.45 0.44 1.00 0.70 0.64
0.74 0.75 0.79 0.70 1.00 0.98
0.82 0.83 0.86 0.64 0.98 1.00

⎤
⎥⎥⎥⎥⎥⎥⎦

By computing the correlation matrix explicitly we can see how likely it is that the
principal components transformation will generate new features quite different from
the recorded measurement vectors. As seen, there is a high degree of correlation
among the bands, so the effect of applying the principal components transformation
should be quite significant. The corresponding eigenvalues and eigenvectors are:

eigenvalues 3727.35 613.34 226.14 23.52 8.16 2.25

eigenvectors first second third fourth fifth sixth
0.433 0.485 −0.307 −0.684 −0.089 0.088
0.282 0.294 −0.218 0.369 0.094 −0.801
0.364 0.347 −0.127 0.627 −0.153 0.561
0.303 −0.673 -0.671 0.018 0.042 0.056
0.615 −0.322 0.562 −0.052 −0.429 −0.129
0.362 −0.047 0.275 −0.026 0.880 0.127

Figure 6.7a shows the original TM bands, while Fig. 6.7e shows the 6 principal
component images. Figure 6.7b shows a colour composite formed by mapping the
original bands 4, 3, and 2 to red, green and blue respectively. Figure 6.7c shows
PC3, PC2 and PC1 mapped to red, green and blue, while Fig. 6.7d shows PC4, PC3
and PC2 mapped to red, green and blue. Interestingly, the PC4, PC3, PC2 colour
composite shows more detail for those ground covers whose spectral responses are
dominant in the visible to near infrared regions, since PC4 (determined by the fourth
eigenvector) is largely a difference image in the visible region. In contrast PC1 is
essentially just a total brightness image, as can be seen from the first eigenvector, so
that it does little to enhance spectral differences.

Notwithstanding the anticipated negligible information content of the last, or last
few, image components resulting from a principal components analysis it is important
to examine all components since often local detail may appear in a later component.
The covariance matrix used to generate the principal component transformation ma-
trix is a global measure of the variability of the original image segment. Abnormal lo-
cal detail therefore may not necessarily be mapped into one of the earlier components
but could just as easily appear later. This is often the case with geological structure.
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6.1.4
The Effect of an Origin Shift

It will be evident that some principal component pixel brightnesses could be negative
owing to the fact that the transformation is a simple axis rotation. Clearly a combi-
nation of positive and negative brightnesses cannot be displayed. Nor can negative
brightness pixels be ignored since their appearance relative to the other pixels in a
component serve to define detail. In practice, the problem with negative values is
accommodated by shifting the origin of the principal components space to yield all
components with positive and thus displayable brightnesses. This has no effect on
the properties of the transformation as can be seen by inserting an origin shift term
in the definition of the covariance matrix in the principal components axes. Define
y′ = y − y0 where y0 is the position of a new origin. In the new y′ co-ordinates

Σy′ = E{(y′ − my′)(y′ − my′)t }

Now my′ = my − y0 so that

y′ − my′ = y − y0 − my + y0 = y − my.

Thus Σy′ = Σy – i.e. the origin shift has no influence on the covariance of the data
in the principal components axes, and can be used for convenience in displaying
principal component images.

6.1.5
Application of Principal Components
in Image Enhancement and Display

In constructing a colour display of remotely sensed data only three dimensions of
information can be mapped to the three colour primaries of the display device. For
imagery with more than three bands that means the user must choose the most
appropriate subset of three to use. A less ad hoc means for colour assignment rests
upon performing a principal components transform and assigning the first three
components to the red, green and blue colour primaries.

Examination of a typical set of principal component images for Landsat data,
such as those seen in Fig. 6.6, reveals that there is very little detail in the fourth
component so that, in general, it could be ignored without prejudicing the ability
to extract meaningful information from the scene. A difficulty with principal com-
ponents colour display, however, is that there is no longer a one to one mapping
between sensor wavelength bands and colours. Rather each colour now represents a
linear combination of spectral components, making photointerpretation difficult for
many applications. An exception would be in exploration geology where structural
differences may be enhanced in principal components imagery, there often being
little interest in the meanings of the actual colours.
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6.1.6
The Taylor Method of Contrast Enhancement

It will be demonstrated below that application of the contrast modification techniques
of Chap. 4 to each of the individual components of a highly correlated vector image
will yield an enhanced image in which certain highly saturated hues are missing.
An interesting contrast stretching procedure which can be used to create a modified
image with good utilisation of the range of available hues rests upon the use of the
principal components transformation. It was developed by Taylor (1973) and has also
been presented by Soha and Schwartz (1978). A more recent and general treatment
has been given by Campbell (1996).

Consider a two dimensional image with the (two dimensional) histogram shown
in Fig. 6.8. As observed the two components are highly correlated as revealed also
from an inspection of the covariance matrix for the image which is

Σx =
[

0.885 0.616
0.616 0.879

]
(6.9)

The range of brightness values occupied in the histogram suggests that there is value
in performing a contrast stretch. Suppose a simple linear stretch is decided upon; the
conventional means then for implementing such an enhancement with a multicom-
ponent image is to apply it to each component independently. This requires the one
dimensional histogram for each component to be constructed. These are obtained
by counting the number of pixels with a given brightness value in each component,
irrespective of their brightness in the other component – in other words they are
marginal distributions of the two dimensional distribution. The single dimensional
histograms corresponding to Fig. 6.8 are shown in Fig. 6.9a and the result of applying
linear contrast enhancement to each of these is seen in Fig. 6.9b. The two dimensional
histogram resulting from the contrast stretches applied to the individual components
is shown in Fig. 6.10 wherein it is seen that the correlation between the components

Fig. 6.8. Histogram for a hypothetical two dimensional image showing correlation in its
components. The numbers indicated on the bars (out of page) are the counts
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Fig. 6.9. a Individual histograms for the image with the two dimensional histogram of Fig. 6.8;
b The individual histograms after a simple linear contrast stretch over all available brightness
values

Fig. 6.10. Histogram of a two dimensional im-
age after simple linear contrast stretch of the
components individually

is still present and that if component 1 is displayed as red and component 2 as green,
no highly saturated reds or greens will be evident in the enhanced image, although
brighter yellows will be more obvious than in the original data. It is a direct result
of the correlation in the image that the highly saturated colour primaries are not dis-
played. The situation is even worse for display of three dimensional correlated image
data. Simple contrast enhancement of each component independently will yield an
image without highly saturated reds, blues and greens but also without saturated yel-
lows, cyans and magentas. The procedure recommended by Taylor overcomes this,
as demonstrated now. This fills the available colour space on the display more fully.
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Let x be the vector of brightness values of the pixels in the original image and y

be the corresponding vector of intensities after principal components transformation,
such that y = Gx. G is the principal components transformation matrix, composed
of transposed eigenvectors of the original covariance matrix Σx . The covariance
matrix which describes the scatter of pixel points in the principal components (y)

vector space is a diagonal matrix of eigenvalues which, for three dimensional data,
is of the form

Σy =
⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦

Suppose now the individual principal components are enhanced in contrast such that
they each cover the corresponding range of brightness values and, in addition, have
the same variances; in other words the histograms of the principal components are
matched, for example, to a Gaussian histogram that has the same variance in all
dimensions. The new covariance matrix will therefore be of the form

Σ ′
y =

⎡
⎣σ 2 0 0

0 σ 2 0
0 0 σ 2

⎤
⎦ = σ 2I

where I is the identity matrix. Since the principal components are uncorrelated, en-
hancement of the components independently yields an image with good utilisation
of the available colour space, with all hues possible. The axes in the colour space
however are principal components axes and, as noted in the previous section, are not
as desirable for photointerpretation as having a colour space based upon the original
components of the image. It would be of particular value therefore if the image data
could be returned to the original x space to give a one-to-one mapping between the
display colours and image components. Let the contrast enhanced principal compo-
nents be represented by the vector y′. These can be transformed back to the original
axes for the image by using the inverse of the principal components transformation
matrix G−1. Since G is orthogonal its inverse is simply its transpose, which is readily
available. The new covariance matrix of the data back in the original image domain is

Σ ′
x = GtE{(y′ − E(y′))(y′ − E(y′))}tG

where x′ = Gty′, is the modified pixel vector in the original space. Consequently

Σ ′
x =GtE{(y′ − E(y′))(y′ − E(y′))}tG
=GtΣ ′

yG

=Gtσ 2IG

i.e. Σ ′
x =σ 2I .

Thus the covariance matrix of the enhanced principal components data is preserved
on transformation back to the original image space. No correlation is introduced
and the data shows good utilisation of the colour space using the original image
data components. In practice, one problem encountered with the Taylor procedure
is the noise introduced into the final results by the contrast enhanced third principal
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component. Should all possible brightness values be available in the components this
would not occur. However because most image analysis software treats image data in
integer format in the range 0 to 255, rounding of intermediate results to integer form
produces the noise. One possible remedy is to filter the noisy components before the
inverse transform is carried out.

It will be appreciated from the foregoing discussion that colour composite princi-
pal component imagery will appear more colourful than a colour composite product
formed from original image bands. This is a direct result of the ability to fill the colour
space completely by contrast enhancing the uncorrelated components, by compar-
ison to the poor utilization of colour by the original correlated data, as seen in the
illustration of Fig. 6.10 and as demonstrated in Fig. 6.6c.

6.1.7
Other Applications of Principal Components Analysis

Owing to the information compression properties of the principal components trans-
formation it lends itself to reduced representation of image data for storage or trans-
mission. In such a situation only the uppermost significant components are retained
as a representation of an image, with the information content so lost being indicated
by the sum of the eigenvalues corresponding to the components ignored. Thereafter
if the original image is to be restored, either on reception through a communications
channel or on retrieval from memory, then the inverse of the transformation ma-
trix is used to reconstruct the image from the reduced set of components. Since the
matrix is orthogonal its inverse is simply its transpose. This technique is known as
bandwidth compression in the field of telecommunications. Until recently it had not
found great application in satellite remote sensing image processing, because hith-
erto image transmission has not been a consideration and available memory has not
placed stringent limits on image storage. With increasing use of imaging spectrom-
etry data however (Sect. 1.2), bandwidth compression has become more important,
as discussed in Sect. 13.8.

An interesting application of principal components analysis is in the detection of
features that change with time between images of the same region. This is described
by example in Chap. 11.

6.2
Noise Adjusted Principal Components Transformation

In the example of Fig. 6.6 it is apparent that any noise present in the original image
has been concentrated in the later principal components. Ordinarily that is what
would be expected: ie. that the components would become progressively noisier as
their eigenvalues decrease. In practice, however, that is not always the case. It is
found, sometimes, that earlier components are noisier than those with the smallest
eigenvalues. The noise adjusted transformation overcomes that problem (Lee et al,
1990).
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Let

y = Gx = Dtx (6.10)

be a transformation that will achieve what we want.As with the principal components
transformation, if Σx is the covariance of the data in the original (as recorded) co-
ordinate system, then the covariance matrix after transformation will be

Σy = DtΣxD (6.11)

To find the value for the transformation matrix Dt that will order the noise by com-
ponent we start by defining the noise fraction

γ = vn

v
(6.12)

where vn is the noise variance along a particular axis (i.e. in a given band) and
v is the total variance along that axis (in that band), consisting of the sum of the
signal (wanted) variance and the noise variance, assuming the signal and noise are
uncorrelated. The total noise variance over all bands in the recorded data can be
expressed as a noise covariance matrix Σn

x so that after transformation according to
(6.10) the noise covariance matrix will be

Σn
y = DtΣn

x D (6.13)

Along one particular axis (g) the noise and total variances are then

vn =d tΣn
x d

v =d tΣxd

so that (6.12) becomes

γ = d tΣn
x d

d tΣxd
(6.14)

We now want to find that new coordinate direction g = d t that minimises γ . To do
so, we take the first derivative of γ with respect to d zero.

Noting that ∂
∂x

{xtAx} = 2Ax then we have from (6.14)

∂γ

∂d
= 2Σn

x d{d tΣxd}−1 − 2Σxd{d tΣxd}−2{d tΣn
x d}

= 0

which, after simplification, leads to

Σn
x d − Σxd

d tΣn
x d

d tΣxd
= 0

or (Σn
x − Σxγ )d = 0

so that (Σn
x Σ−1

x − γ I)d = 0 (6.15)

Thus the γ are the eigenvalues of Σn
x Σ−1

x and d are the associated eigenvectors.
If we rank the eigenvalues in increasing order, then the image components will be
ranked from that with the lowest noise variance to that with the highest, as required.
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Suppose now the noise covariance can be transformed to the identity matrix I

(we will see how to do that below), then (6.15) becomes

(Σ−1
x − γ I)d = 0

Also, since Σn
x = I then γ = v−1, so that the last expression can be written, after

multiplying throughout by Σx ,

(Σx − vI)d = 0

which is the standard eigenvalue equation associated with the usual principal compo-
nents transformation. Note, as expected that v, the eigenvalue, is now explicitly the
image variance in the relevant band, as might be expected. Therefore we now have
a simple way to apply the noise adjusted principal components transformation – ie
to ensure that the transformed images are ranked in increasing order of noise vari-
ance: first we transform the original data such that its noise covariance is the identity
matrix, and then we apply the standard principal components procedure.

The only outstanding step is to know how to transform the data so it has a unity
noise covariance. That can be achieved in the following manner.

From Appendix D we see that a diagonal form for Σn
x is

� = E−1Σn
x E

in which � is the diagonal matrix of its eigenvalues and E is the matrix of its
eigenvectors. However, we want the diagonal form to be the identity matrix. To
generate that we pre-multiply the last expression by �−1/2tand post-multiply it by
�−1/2 so that we end up with

I = �(−1/2)tE−1Σn
x E�−1/2

If we define F = E�−1/2, so that

I = F tΣn
x F

we recognise y = F tx as the transformation of the original data that will yield a new
data set in which the noise covariance matrix is unity. Provided this transformation is
carried out first (which involves finding or estimating the noise covariance, and then
finding its eigenvalues and eigenvectors) then the standard principal components
transformation can be applied.

There are several ways the noise content of an image can be estimated. Many
are based on examining the local properties of an image in segments thought to
represent homogeneous regions on the ground. For those areas the residual data
created by subtracting a smoothed version of the image from the original is assumed
to represent noise. Olsen (1993) provides an overview of noise estimation methods.

6.3
The Kauth-Thomas Tasseled Cap Transformation

The principal components transformation treated in Sects. 6.1 and 6.2 yields a new
co-ordinate description of multispectral remote sensing image data by establishing a
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Fig. 6.11. a Infrared versus red subspace showing trajectories of crop development; b Red
versus green subspace also depicting crop development

diagonal form of the global covariance matrix. The new co-ordinates (components)
are linear combinations of the original spectral bands. Other linear transformations
are of course possible. One is a procedure referred to as canonical analysis, treated
in Chap. 10. Another, to be developed below, is application-specific in that the new
axes in which data are described have been devised to maximise information of
importance, in this case, to agriculture. Other similar special transformations would
also be possible.

The so-called “tasseled cap” transformation (Crist and Kauth, 1986) developed by
Kauth and Thomas (1976) is a means for highlighting the most important (spectrally
observable) phenomena of crop development in a way that allows discrimination
of specific crops, and crops from other vegetative cover, in Landsat multitemporal,
multispectral imagery. Its basis originally lies in an observation of crop trajectories
in band 6 versus band 5, and band 5 versus band 4 subspaces. Consider the former
as shown in Fig. 6.11a.

A first observation that can be made is that the variety of soil types on which
specific crops might be planted appear as points along a diagonal in an infrared, red
space as shown. This is well-known and can be assessed from an observation of the
spectral reflectance characteristics for soils. (See for example Chap. 5 of Swain and
Davis, 1978.) Darker soils lie nearer the origin and lighter soils at higher values in
both bands. The actual slope of this line of soils will depend upon global external
variables such as atmospheric haze and soil moisture effects. If the transformation
to be derived is to be used quantitatively these effects need to be modelled and the
data calibrated or corrected beforehand.

Consider now the trajectories followed in infrared versus red subspace for crop
pixels corresponding to growth on different soils – in this case take the extreme light
and dark soils as depicted in Fig. 6.11a. For both regions at planting the multispectral
response is dominated by soil types, as expected. As the crops emerge the shadows
cast over the soil dominate any green matter response.As a result there is considerable
darkening of the response of the lighter soil crop field and only a slight darkening
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Fig. 6.12. Crop trajectories in a
green, red, infrared space, having
the appearance of a tasseled cap

of that on dark soil. When both crops reach maturity their trajectories come together
implying closure of the crop canopy over the soil. The response is then dominated
by the green biomass, being in a high infrared and low red region, as is well known.
When the crops senesce and turn yellow their trajectories remain together and move
away from the green biomass point in the manner depicted in the diagram. However
whereas the development to maturity takes place almost totally in the same plane,
the yellowing development in fact moves out of this plane, as can be assessed by
how the trajectories develop in the red versus green subspace during senescence as
illustrated in Fig. 6.11b.

Should the crops then be harvested, the trajectories beyond senescence move, in
principle, back towards their original soil positions.

Having made these observations, the two diagrams of Fig. 6.11 can now be
combined into a single three dimensional version in which the stages of the crop
trajectories can be described according to the parts of a cap, with tassels, from which
the name of the subsequent transformation is derived. This is shown in Fig. 6.12. The
first point to note is that the line of soils used in Fig. 6.11a is shown now as a plane
of soils. Its maximum spread is along the three dimensional diagonal as indicated;
however it has a scatter about this line consistent with the spread in red versus green
as shown in Fig. 6.11b. Kauth and Thomas note that this plane of soils forms the brim
and base of the cap. As crops develop on any soil type their trajectories converge
essentially towards the crown of the cap at maturity whereupon they fold over and
continue to yellowing as indicated. Thereafter they break up to return ultimately to
various soil positions, forming tassels on the cap as shown.

The behaviour observable in Fig. 6.12 led Kauth and Thomas to consider the
development of a linear transformation that would be useful in crop discrimination.
As with the principal components transform, this transformation will yield four or-
thogonal axes. However the axis directions are chosen according to the behaviour
seen in Fig. 6.12.
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Three major orthogonal directions of significance in agriculture can be identi-
fied. The first is the principal diagonal along which soils are distributed. This was
chosen by Kauth and Thomas as the first axis in the tasseled cap transformation.
The development of green biomass as crops move towards maturity appears to occur
orthogonal to the soil major axis. This direction was then chosen as the second axis,
with the intention of providing a greeness indicator. Crop yellowing takes place in
a different plane to maturity. Consequently choosing a third axis orthogonal to the
soil line and greeness axis will give a yellowness measure. Finally a fourth axis is
required to account for data variance not substantially associated with differences in
soil brightness or vegetative greeness or yellowness. Again this needs to be orthogo-
nal to the previous three. It was called “non-such” by Kauth and Thomas in contrast
to the names “soil brightness”, “green-stuff” and “yellow-stuff” they applied to the
previous three.

The transformation that produces the new description of the data may be ex-
pressed as

u = Rx + c (6.16)

where x is the original Landsat vector, and u is the vector of transformed brightness
values. This has soil brightness as its first component, greeness as its second and
yellowness as its third. These can therefore be used as indices, respectively. R is the
transformation matrix and c is a constant vector chosen (arbitrarily) to avoid negative
values in u.

The transformation matrix R is the transposed matrix of column unit vectors along
each of the transformed axes (compare with the principal components transformation
matrix). For a particular agricultural region Kauth and Thomas chose the first unit
vector as a line of best fit through a set of soil classes.The subsequent unit vectors were
generated by using a Gram-Schmidt orthogonalization procedure in the directions
required. The transformation matrix generated for Landsat MSS data was

R =

⎡
⎢⎢⎣

0.433 0.632 0.586 0.264
−0.290 −0.562 0.600 0.491
−0.829 0.522 −0.039 0.194

0.223 0.012 −0.543 0.810

⎤
⎥⎥⎦

From this it can be seen, at least for the region investigated by Kauth and Thomas,
that the soil brightness is a weighted sum of the original four Landsat bands with
approximately equal emphasis. The greeness measure is the difference between the
infrared and visible responses. In a sense therefore this is more a biomass index.
The yellowness measure can be seen to be substantially the difference between the
Landsat visible red and green bands.

Just as new images can be synthesised to correspond to various principal compo-
nents so can the actual transformed images be created for this approach. By applying
(6.16) to every pixel in a Landsat multispectral scanner image, soil brightness, gree-
ness, yellowness and non-such images can be produced. These can then be used to
assess stages in crop development. The method can also be applied to other sensors.
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6.4
Image Arithmetic, Band Ratios and Vegetation Indices

Addition, subtraction, multiplication and division of the pixel brightnesses from two
bands of image data to form a new image are particularly simple transformations to
apply. Multiplication seems not to be as useful as the others, band differences and
ratios being most common.

Differences can be used to highlight regions of change between two images
of the same area. This requires that the images be registered using the techniques
of Chap. 2 beforehand. The resultant difference image must be scaled to remove

Fig. 6.13. Landsat multispectral scanner band 7 a and band 5, b images of an arid region
containing irrigated crop fields. The ratio of these two images c shows vegetated regions as
bright, soils as mid to dark grey and water as black
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negative brightness values. Normally this is done so that regions of no change appear
mid-grey, with changes shown as brighter or duller than mid-grey according to the
sign of the difference.

Ratios of different spectral bands from the same image find use in reducing the
effect of topography, as a vegetation index, and for enhancing subtle differences in
the spectral reflectance characteristics for rocks and soils. As an illustration of the
value of band ratios for providing a single vegetation index image, Fig. 6.13 shows
Landsat multispectral scanner band 5 and band 7 images of an agricultural region
along with the band 7/band 5 ratio. As seen, healthy vegetated areas are bright, soils
are mid to dark grey, and water is black. These shades are readily understood from an
examination of the corresponding spectral reflectance curves. Variations on simple
arithmetic operations between bands are also sometimes used as indices. Some of
these are treated in Sect. 10.4.6. Note that band ratioing is not a linear transformation.
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Problems

6.1 (a) At a conference research group A and research group B both presented papers on
the value of the principal components transformation (also known as the Karhunen-Loève or
Hotelling transform) for reducing the number of features required to represent image data.
Group A described very good results that they had obtained with the method whereas Group
B indicated that they felt it was of little use. Both groups were using image data with only two
spectral components. The covariance matrices for their respective images are:

ΣA =
[

5.4 4.5
4.5 6.1

]
ΣB

[
28.0 4.2
4.2 16.4

]

Explain the points of view of both groups.
(b) If information content can be related directly to variance indicate how much information
is discarded if only the first principal component is retained by both groups.

6.2 Suppose you have been asked to describe the principal components transformation to a
non-specialist. Write a single paragraph summary of its essential features, using diagrams if
you wish, but no mathematics.

6.3 (For those mathematically inclined), Demonstrate that the principal components transfor-
mation matrix developed in Sect. 6.1.2 is orthogonal.

6.4 Colour image products formed from principal components generally appear richer in
colour than a colour composite product formed by combining the original bands of remote
sensing image data. Why do you think that is so?

6.5 (a) The steps involved in computing principal component images may be summarised as:

calculation of the image covariance matrix
eigenanalysis of the covariance matrix
computation of the principal components.

Assessments can be made in the first two steps as to the likely value in proceeding to compute
the components. Describe what you would look for in each case.
(b) The covariance matrix need not be computed over the full image to produce a principal
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components transformation. Discuss the value of using training areas to define the portion of
image data to be taken into account in compiling the covariance matrix.

6.6 Imagine you have two images from a sensor which has a single band in the range 0.9 to
1.1 µm. One image was taken before a flood occurred. The second shows the extent of flood
inundation. Produce a sketch of what the “two-date” multispectral space would look like if the
image from the first date contained rich vegetation, sand and water and that in the second date
contains the same cover types but with an expanded region of water. Demonstrate how a two
dimensional principal components transform can be used to highlight the extent of flooding.

6.7 Describe the nature of the correlations between the pairs of axis variables (e.g. bands) in
each of the cases in Fig. 6.14.

Fig. 6.14. Examples of two dimensional correlations

6.8 The covariance matrix for an image recorded by a particular four channel sensor is as
shown below. Which band would you discard if you had to construct a colour composite
display of the image by assigning the remaining three bands to each of the colour primaries?

Σ =

⎡
⎢⎢⎢⎢⎣

35 10 10 5

10 20 12 2

10 12 40 30

5 2 30 30

⎤
⎥⎥⎥⎥⎦



7
Fourier Transformation of Image Data

7.1
Introduction

Many of the geometric enhancement techniques used with remote sensing image
data can be carried out using the simple template-based techniques of Chap. 5. More
flexibility is offered however if procedures are implemented in the so-called spatial
frequency domain by means of the Fourier transformation. As a simple illustration,
filters can be designed to extract periodic noise from an image that is unable to be
removed by practical templates. As demonstrated in Sect. 5.4 the computational cost
of using Fourier transformation for geometric operations is high by comparison to
the template methods usually employed. However with the computational capacity
of modern workstations, and the flexibility available in Fourier transform processing,
this approach is one that should not be ignored.

Development of Fourier transform theory depends upon a knowledge of complex
numbers and facility with integral calculus. The reader without that background may
wish to pass over this Chapter and may do so without detracting from material in the
remainder of the book. It is the purpose of the Chapter to present an overview of the
significant aspects of the theory of Fourier transformation of image data. In its entirety
the topic is an extensive one and well beyond the scope of this treatment. Instead the
material presented in the following will serve to introduce the operational aspects of
the topic, with little dependence on proofs and theory. Should the treatment be found
to be too brief, particularly in the background material of Sects. 7.2 to 7.5, more
details can be found in Brigham (1974, 1988), and McGillem and Cooper (1984).

Another transformation that now finds wide application to images is that based
on the definition of wavelets (Castleman, 1996).

7.2
Special Functions

A number of mathematical functions are important in both developing and under-
standing the Fourier transformation. These are reviewed in this section along with
some properties that will be of use later on.



166 7 Fourier Transformation of Image Data

Although functions of interest in image processing have position as their inde-
pendent variable, it will be convenient here to use functions of time. These will be
interpreted as functions of position as required.

7.2.1
The Complex Exponential Function

The complex exponential is defined by

f (t) = Rejωt (7.1a)

where j = √−1, R is the amplitude of the function and ω is called its radian
frequency. The units of ω are radians per second (or radians per unit of spatial
variable). Frequently ω is expressed in terms of “natural” frequency

f = ω/2π (7.1b)

where f has units of hertz (or cycles per spatial variable). The complex exponential
is periodic, with period T = 2π/ω. This is appreciated by plotting it as a function
of the independent variable on the complex (argand) plane. Alternatively, we can
express

f (t) = Re±jωt = R cos ωt ± jR sin ωt (7.1c)

to see its periodic behaviour in terms of sinusoids. For convenience we will now
choose R = 1. From this last expression we see

cos ωt = Re{ejωt }
sin ωt = Jm{ejωt }

where Re and Jm are operators that select the real and imaginary parts of a complex
number.

Finally, it can be seen from (7.1c)

cos ωt = 1

2
(ejωt + e−jωt ) (7.2a)

sin ωt = 1

2j
(ejωt − e−jωt ) (7.2b)

7.2.2
The Dirac Delta Function

A function of particular importance in determining properties of sampled signals,
which include digital image data, is the impulse function, also referred to as the Dirac
delta function. This is a spike-like function of infinite amplitude and infinitessimal
duration. It cannot be defined explicitly. Instead it is defined by a limiting operation
as in the following manner.

Consider the rectangular pulse of duration α and amplitude 1/α as seen in Fig. 7.1.
Note that the area under the curve is 1. Accordingly the delta function δ(t) is defined
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Fig. 7.1. Pulse which approaches an impulse in the limit
as α → 0

as the pulse in the limit as α goes to zero. As a formal definition, the best that can be
done is

δ(t) = 0 for t 	= 0 (7.3a)

and
∞∫

−∞
δ(t)dt = 1 (7.3b)

This turns out to be sufficient for our purposes. Equation (7.3a) defines a delta function
at the origin; an impulse at time t0 is defined by

δ(t − t0) = 0 for t 	= t0 (7.4a)

and
∞∫

−∞
δ(t − t0)dt = 1 (7.4b)

7.2.2.1
Properties of the Delta Function

From the definition of the delta function it can be seen that the product of a delta
function with another function is

δ(t − t0)f (t) = δ(t − t0)f (t0), (7.5a)

from which we can see
∞∫

−∞
δ(t − t0)f (t)dt =

∞∫
−∞

δ(t − t0)f (t0)dt

=f (t0)

∞∫
−∞

δ(t − t0)dt
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i.e.
∞∫

−∞
δ(t − t0)f (t)dt = f (t0) (7.5b)

This is known as the sifting property of the impulse.

7.2.3
The Heaviside Step Function

Figure 7.2 shows the Heaviside step function defined by

u(t − t0) = 1 for t � t0 (7.6a)

= 0 for t < t0 (7.6b)

Note that it is 1 when its argument is zero or positive, and is zero for a negative
argument. It can be seen that u(t) is related to δ(t) by

δ(t) = du(t)

dt

Fig. 7.2. The Heaviside step function

7.3
Fourier Series

If a function f (t) is periodic with period T – i.e. f (t) = f (t + T ) – then it can be
expressed as an infinite sum of complex exponentials in the manner

f (t) =
∞∑

n=−∞
Fne

jnw0t , ω0 = 2π

T
(7.7a)

in which n is an integer and the complex expansion coefficients Fn are given by

Fn = 1

T

T/2∫
−T/2

f (t) e−jnw0tdt (7.7b)
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Fig. 7.3. A square waveform

The expressions in (7.7) are referred to as the exponential form of the Fourier se-
ries; (7.1c) also allows a trigonometric expression to be derived (McGillem and
Cooper, 1984). Although (7.7a) is expressed in exponentials we often colloquially
talk of (7.7a) as showing the sinusoidal spectral composition of f (t). Equation (7.2)
shows that this is acceptable and quite accurate.

As an illustration consider the need to determine the Fourier series of the square
waveform in Fig. 7.3. From (7.7b) it can be seen that

Fn = 1

T

T/4∫
−T/4

e−jnω0tdt

= 1

nπ
sin

nπ

2
.

This tells the amount of each of the constituent ejnω0t in (7.7a) required to represent
the square waveform – i.e. it describes its sinusoidal composition. Note that when
n = 0, F0 = 1/2 as expected from Fig. 7.3. For n > 1 the coefficients decrease in
amplitude according to 1/n. In general the Fn are complex and thus can be expressed
in the form of an amplitude and phase, referred to respectively as amplitude and phase
spectra.

7.4
The Fourier Transform

The Fourier series of the preceding section is a description of a periodic function in
terms of a sum of sinusoidal terms (expressed in complex exponentials) at integral
multiples of the so-called fundamental frequency ω0. For functions that are non-
periodic, or aperiodic as they are sometimes called, decomposition into sinusoidal
components requires use of the Fourier transformation. The transform itself, which
is equivalent to the Fourier series coefficients of (7.7b), is defined by

F(ω) =
∞∫

−∞
f (t)e−jωt dt (7.8a)
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Fig. 7.4. a Unit pulse and b its Fourier transform

In general, an aperiodic function requires a continuum of sinusoidal frequency com-
ponents for a Fourier description. Indeed if we plot F(ω), or for that matter its
amplitude and phase, as a function of frequency it will be a continuous function of
ω. The function f (t) can be reconstructed from the spectrum according to

f (t) = 1

2π

∞∫
−∞

F(ω)ejωt dω (7.8b)

A Fourier transform of some importance is that of the unit pulse shown in
Fig. 7.4a. From (7.8a) this is seen to be

F(ω) =
a∫

−a

e−jωt dt = 2a
sin aω

aω

which is shown plotted in Fig. 7.4b. Note that the frequency axis accommodates both
positive and negative frequencies. The latter have no physical meaning but rather are
an outcome of using complex exponentials in (7.8a) instead of sinusoids.

It is also of interest to note the Fourier transform of an impulse

F(ω) =
∞∫

−∞
δ(t) e−jωt dt = 1

from the sifting property of the impulse (7.5b); the Fourier transform of a constant
is

F(ω) =
∞∫

−∞
c e−jωt dt = 2πcδ(ω).

This result is easily shown by working from the spectrum F(ω) to the time function
and again using the sifting property. In a like manner it can be shown that the Fourier
transform of a periodic function is given by
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F(ω) = 2π

∞∑
n=−∞

Fnδ(ω − nω0)

where Fn is the Fourier series coefficient corresponding to the frequency nωo.

7.5
Convolution

7.5.1
The Convolution Integral

In Sect. 5.3 the concept of convolution was introduced as a means for determining
the response of a linear system. It is also a very useful signal synthesis operation in
general and finds particular application in the description of digital data, as will be
seen in later sections. Here we express the convolution of two functions f1(t) and
f2(t) as

y(t) =
∞∫

−∞
f1(τ )f2(t − τ)dτ � f1(t) ∗ f2(t) (7.9)

It is a commutative operation, i.e. f1(t) ∗ f2(t) = f2(t) ∗ f1(t) a fact that can
sometimes be exploited in evaluating the integral.

The convolution operation can be illustrated by interpreting the defining integral
as representing the following four operations:

(i) folding – form f2(−τ) by taking its mirror image about the ordinate axis
(ii) shifting – form f2(t − τ) by shifting f2(−τ) by the amount t

(iii) multiplication – form f1(τ )f2(t − τ)

(iv) integration – compute the area under the product.

These steps are illustrated in Fig. 7.5.

7.5.2
Convolution with an Impulse

Convolution of a function with an impulse is important in sampling. The sifting
theorem for the delta function, along with (7.9), shows

f (t) ∗ δ(t − t0)=
∞∫

−∞
f (τ)δ(t − τ − t0)dτ

=f (t − t0).

Thus the effect is to shift the function f (t) to a new origin.
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Fig. 7.5. Graphical illustration of the convolution operation
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7.5.3
The Convolution Theorem

This theorem is readily verified using the definition of convolution and the definition
of the Fourier transform. It has two forms (Papoulis, 1980). These are:

If

y(t) = f1(t) ∗ f2(t)

then

Y (ω) = F1(ω)F2(ω), (7.10a)

and, if

Y (ω) = F1(ω) ∗ F2(ω)

then

y(t) = 1

2π
f1(t)f2(t) (7.10b)

7.6
Sampling Theory

The previous sections have dealt with functions that are continuous with time (or
with position, as the case may be). However our interest principally is in functions,
and images, that are discrete with time or position. Discrete time functions and digital
images can be considered to be the result of the corresponding continuous functions
having been sampled on a regular basis. Again, we will develop the concepts of
sampling using functions of a single variable, such as time; the concepts are readily
extended to two dimensional image functions.

A periodic sequence of impulses, spaced T apart,

�(t) =
∞∑

k=−∞
δ(t − kT ) (7.11)

can be considered as a sampling function, i.e. it can be used to extract a uniform set
of samples from a function f (t) by forming the product

f = f (t)�(t). (7.12)

According to (7.5a), f is a sequence of samples of value f (kT ) δ(t − kT ). Despite
the undefined magnitude of the delta function we will be content in this treatment to
regard that product as a sample of the function f (t). Strictly this should be interpreted
in terms of so-called distribution theory; a simple interpretation of (7.12) as a set
of uniformly spaced samples of f (t) however will not compromise our subsequent
development.
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It is important to consider the Fourier transform of the set of samples in (7.12)
so that the frequency composition of a sampled function can be appreciated. This
can be done using the convolution theorem (7.10b) provided the Fourier transform
of �(t) can be found.

The Fourier transform of�(t) can be determined via its Fourier series. From (7.7b)
and (7.5b) the Fourier series coefficients of �(t) are given by

�n = 1

T

T/2∫
−T/2

δ(t) e−jnω0t dt = 1

T

which, with the expression for the Fourier transform of a periodic function in Sect. 7.4,
gives the Fourier transform of �(t) as

�(ω) = 2π

T

∞∑
n=−∞

δ(ω − nωs) (7.13)

where ωs = 2π/T . Thus the Fourier transform of the periodic sequence of impulses
spaced T apart in time is itself a periodic sequence of impulses in the frequency
domain, spaced 2π/T rad s−1 apart (or 1/T Hz apart). Thus if f (t) has the spectrum
F(ω) (i.e. Fourier Transform) depicted in Fig. 7.6a then the spectrum of the set of
samples in (7.12) is as shown in Fig. 7.6c. This is given by convolving F(ω) with the
sequence of impulses in (7.13), according to (7.10b). Recall that convolution with
an impulse shifts a function to a new origin centred on the impulse.

Figure 7.6c demonstrates that the spectrum of a sampled function is a periodic
repetition of the spectrum of the unsampled function, with the repetition period in
the frequency domain determined by the rate at which the time function is sampled.
If the sampling rate is high then the segments of the spectrum are well separated. If
the sampling rate is low then the segments in the spectrum are close together.

In the illustration shown in Fig. 7.6 the spectrum of f (t) is shown to be limited
to frequencies below B Hz. (2πB rad · s−1); B is referred to as the bandwidth of
f (t). Not all real non-periodic functions have a limited bandwidth – the single pulse
of Fig. 7.4 is an example of this – however it suits our purpose here to assume there
is a limit to the frequency composition of functions of interest to us, defined by the
signal bandwidth.

If adjacent segements are to remain separated as depicted in Fig. 7.6c then it is
clear that

1

T
> 2B (7.14)

i.e. that the rate at which the function f (t) is sampled must exceed twice the band-
width of f (t). Should this not be the case then the segments of the spectrum of the
sampled function overlap as shown in Fig. 7.6d, causing a form of distortion called
aliasing.

A sampling rate of 2 B in (7.14) is referred to as the Nyquist rate; Eq. (7.14) itself
is often referred to as the sampling theorem.
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Fig. 7.6. Development of the Fourier transform of a sampled function. a Unsampled function
and its spectrum; b Periodic sequence of impulses and its spectrum; c Sampled function and
its spectrum; d Sub-Nyquist rate sampling impulses and spectrum with aliasing. F represents
Fourier transformation
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7.7
The Discrete Fourier Transform

7.7.1
The Discrete Spectrum

Consider now the problem of finding the spectrum (i.e. of computing the Fourier
transform) of a sequence of samples. This is the first stage in our computation of
the Fourier transform of an image. Indeed, the sequence of samples to be considered
here could be looked at as a single line of pixels in digital image data.

Figure 7.7a shows that the spectrum of a set of samples is itself a continuous
function of frequency. For digital processing clearly it is necessary that the spectrum
be also represented by a set of samples, that would, for example, exist in computer

Fig. 7.7. Effect of sampling the spectrum. a Sampled function and its spectrum; b Periodic
sequence of impulses used to sample the spectrum (right) and its time domain equivalent (left);
c Sampled version of the spectrum (right) and its time domain equivalent (left); the latter is a
periodic version of the samples in a. In these F−1 represents an inverse Fourier transformation
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memory. Therefore we have to introduce a suitable sampling function also in the
frequency domain. For this purpose consider an infinite periodic sequence of impulses
in the frequency domain spaced �f (i.e. �ω/2π ) apart as shown in Fig. 7.7b. It
can be shown that the inverse transform of this sequence is another sequence of
impulses in the time domain, spaced T0 = 1/�f apart. This can be appreciated
readily from (7.11) and (7.13), although here we are going from the frequency domain
to the time domain rather than vice versa.

If the (periodic) spectrum F(ω) in Fig. 7.7a is multiplied by the frequency domain
sampling function of Fig. 7.7b then the convolution theorem (7.10a) implies that the
samples of f (t) will be formed into a periodic sequence with period T0 as illustrated
in Fig. 7.7c. It is convenient if the number of samples used to represent the spectrum is
the same as the actual number of samples taken of f (t). Let this number be K . (There
is a distortion introduced by using a finite rather than infinite number of samples.
This will be addressed later.) Since the time domain has samples spaced T apart, the
duration of sampling is KT seconds. It is pointless sampling the time domain over
a period longer than T0 since no new information is added. Simply other periods
are added. Consequently the optimum sampling time is T0, so that T0 = KT . Thus
the sampling increment in the frequency domain is �f = 1/T0 = 1/KT . It is the
inverse of the sampling duration. Likewise the total unambiguous bandwidth in the
frequency domain is K × �f = 1/T, covering just one segment of the spectrum.

With those parameters established we can now consider how the Fourier transform
operation can be modified to handle digital data.

7.7.2
Discrete Fourier Transform Formulae

Let the sequence φ(k), k = 0, . . . K − 1 be the set of K samples taken of f (t) over
the sampling period 0 to T0. The samples correspond to times tk = kT .

Let the sequence F(r), r = 0, . . . K − 1 be the set of samples of the frequency
spectrum. These can be derived from the φ(k) by suitably modifying (7.8a). For
example, the integral over time can be replaced by the sum over k = 0 to K −1, with
dt replaced by T , the sampling increment. The continuous function f (t) is replaced
by the samples φ(k) and ω = 2πf is replaced by 2πr�f , with r = 0, . . . K − 1.
Thus ω = 2πr/T0. The time variable t is replaced by kT = kT0/K, k = 0, . . . K−1.
With these changes (7.8a) can be written in sampled form as

F(r) = T

K−1∑
k=0

φ(k)Wrk, r = 0, . . . K − 1 (7.15)

with

W = e−j2π/K. (7.16)

Equation (7.15) is known as the discrete Fourier transform (DFT). In a similar manner
a discrete inverse Fourier transform (DIFT) can be derived that allows reconstruction
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of the time sequence φ(k) from the frequency samples F(r). This is

φ(k) = 1

T0

K−1∑
r=0

F(r)W−rk, k = 0, . . . K − 1 (7.17)

Substitution of (7.15) into (7.17) shows that those two expressions form a Fourier
transform pair. This is achieved by putting k = l in (7.17) so that

φ(l)= 1

T0

K−1∑
r=0

F(r)W−rl

= 1

T0

K−1∑
r=0

T

K−1∑
k=0

φ(k)Wr(k−l)

= 1

K

K−1∑
k=0

φ(k)

K−1∑
r=0

Wr(k−l)

The second sum in this expression is zero for k 	= l; when k = l it is K , so that
the right hand side of the equality then becomes φ(l) as required. An interesting
aspect of this development has been that T has cancelled out, leaving 1/K as the
net constant from the forward and inverse transforms. As a result (7.15) and (7.17)
could conveniently be written

F(r) =
K−1∑
k=0

φ(k)Wrk, r = 0, . . . K − 1 (7.15′)

φ(k) = 1

K

K−1∑
r=0

F(r)W−rk, k = 0, . . . K − 1 (7.17′)

7.7.3
Properties of the Discrete Fourier Transform

Three properties of the discrete Fourier transform and its inverse are of importance
here.

Linearity: Both the DFT and DIFT are linear operations. Thus if F1(r) is the DFT
of φ1(k) and F2(r) is the DFT of φ2(k) then for any complex constants a and b,
aF1(r) + bF2(r) is the DFT of a φ1(k) + b φ2(k).

Periodicity: From (7.16), WK = 1 and WkK = 1 for k integral. Thus for r ′ = r +K

F(r ′) = T

K−1∑
k=0

φ(k) W(r+K)k = F(r).
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Therefore in general

F(r + mK) = F(r) (7.18a)

φ(k + mK) = φ(k) (7.18b)

where m is an integer. Thus both the sequence of time samples and the sequence
of frequency samples are periodic with period K . This is consistent with the de-
velopment of Sect. 7.7.1 and has two important implications. First, to generate the
Fourier series components of a periodic function, samples need only be taken over
one period. Secondly, sampling converts an aperiodic sequence into a periodic one,
the period being determined by the sampling duration.

Symmetry: Let r ′ = K − r in (7.15), to give F(r ′) = T
K−1∑
k=0

φ(k)W−rk WkK.

Since WkK = 1 this shows F(K − r) = F(r)∗ where here ∗ represents complex
conjugate. This implies that the amplitude spectrum is symmetric about K/2 and the
phase spectrum is antisymmetric (i.e. odd).

7.7.4
Computation of the Discrete Fourier Transform

It is convenient to consider the reduced form of (7.15):

A(r) = 1

T
F(r) =

K−1∑
k=0

φ(k)Wrk, r = 0, . . . K − 1 (7.19)

Computation of the K values of A(r) from the K samples φ(k) requires K2 multipli-
cations and K2 additions, assuming that the required values of Wrk would have been
calculated beforehand and stored. Since the Wrk are complex, the multiplications
and additions necessary to evaluate A(r) are complex. Thus, as the number of sam-
ples φ(k) becomes large, the time required to compute the sampled spectrum A(r)

increases enormously (as the square of the number of samples). Between 1000 and
10,000 samples may in fact require unacceptably high computing time. A technique
is required therefore to reduce substantially the number of arithmetic operations
required in computing discrete Fourier transforms.

7.7.5
Development of the Fast Fourier Transform Algorithm

Assume K is even; in fact the algorithm to follow will require K to be expressible
as K = 2m where m is an integer. From φ(k) form two sequences Y (k) and Z(k)

each of K/2 samples. The first contains the even numbered samples of φ(k) and the
second the odd numbered samples, viz.

Y (k) : φ(0), φ(2), . . . φ(K − 2)

Z(k) : φ(1), φ(3), . . . φ(K − 1)
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so that

Y (k) = φ(2k)

Z(k) = φ(2k + 1)
k = 0, . . .

K

2
− 1.

Equation (7.19) can then be written

A(r)=
K/2−1∑
k=0

{Y (k) W 2rk + Z(k) Wr(2k+1)}

=
K/2−1∑
k=0

Y (k) W 2rk + Wr

K/2−1∑
k=0

Z(k) W 2rk

=B(r) + WrC(r)

where B(r) and C(r) will be recognised as the discrete Fourier transforms of the
sequences Y (k) and Z(k). These are periodic, with period K/2, according to (7.18).
Since WK/2 = −1 it can be shown that the first K/2 samples of A(r) and the last
K/2 samples of A(r) can be obtained from the same amount of computation, viz;

A(r) = B(r) + WrC(r)

A
(
r + K

2

) = B(r) − WrC(r)

]
r = 0, . . .

K

2
− 1 (7.20)

Furthermore values of Wr only up to WK/2 are required.
The procedure of (7.20) can be represented conveniently in flow chart form. This

is shown for K = 8 in Fig. 7.8

Fig. 7.8. Flow chart for the first stage in the development of the fast Fourier transform algo-
rithm, for the case of K = 8



7.7 The Discrete Fourier Transform 181

Equation (7.20) requires the Fourier transforms B(r) and C(r). The same pro-
cedure can again be used to advantage for these; Y (k) and Z(k) are each broken
up into sequences of odd and even samples, requiring Y (k) and Z(k) to contain an
even number each. This in turn means that K had to be divisible at least by 4. Let
S(k) contain the even numbered samples of Y (k) and T (k) the odd numbered sam-
ples. Also let U(k) contain the even numbered samples of Z(k) and V (k) the odd
numbered samples:

S(k) : Y (0), Y (2), ... (i.e. φ(0), φ(4), ...)

T (k) : Y (1), Y (3), ... (i.e. φ(2), φ(6), ...)

U(k) : Z(0), Z(2), ... (i.e. φ(1), φ(5), ...)

V (k) : Z(1), Z(3), ... (i.e. φ(3), φ(7), ...)

If the discrete Fourier transforms of these are denoted D(r), E(r), G(r) and H(r)

respectively, each containing K/4 points, then

B(r)=
K/2−1∑
k=0

Y (k) W 2rk

=D(r) + W 2rE(r)

which can be written

B(r) = D(r) + W 2rE(r)

B

(
r + K

4

)
= D(r) − W 2rE(r)

⎤
⎥⎦ r = 0, . . .

K

4
− 1

again showing that the first and second halves of the set of B(r) can be obtained by
the same calculations. Similarly

C(r) = G(r) + W 2rH(r)

C

(
r + K

4

)
= G(r) − W 2rH(r)

⎤
⎥⎦ r = 0, . . .

K

4
− 1.

Figure 7.9 shows how the flow chart of Fig. 7.8 can be modified to take account of
this development.

Clearly the procedure followed to this point can be repeated as many times as
there are discrete Fourier transforms left to compute. Ultimately transforms will
be required on sequences with just two samples each. For example if K = 8, the
sequences S, T , U and V will each contain only two samples and their discrete
Fourier transforms will be of the form

D(r)=
1∑

k=0

S(k) W 4rk, r = 0, 1

=S(0)W 0 + S(1) W 4r r = 0, 1
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Fig. 7.9. Flow chart for the second stage of the development of the fast Fourier transform
algorithm, for the case of K = 8

i.e. D(0)=S(0) + S(1)

D(1)=S(0) − S(1),

showing that the discrete Fourier transform of two samples is obtained by simple
addition and subtraction. Doing likewise for the other sequences gives the final flow
chart for K = 8 as shown in Fig. 7.10.

Fig. 7.10. Flow chart for a complete fast Fourier transform evaluation when K = 8
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7.7.6
Computational Cost of the Fast Fourier Transform

The information contained in Fig. 7.10 can be used to determine the computational
cost of the fast Fourier transform algorithm and therefore to find its speed advantage
over a direct evaluation of the discrete formula in (7.19). The figure shows that
the only multiplications required are by the values of W . While this is strictly not
necessary in the first set of calculations on the left of the figure (Since W 0 = 1, and
−W 0 = −1) it is simpler in programming if the multiplications are retained. Thus the
left hand set of computations requires K/2 complex multiplications and K additions
(or subtractions).The next column of operations requires anotherK/2 multiplications
as does the last set for the case of K = 8. Altogether for this illustration 3/2K

multiplications and 3K additions are required. It is easy to generalize this to:

number of complex multiplications = 1

2
K log2 K

number of complex additions = K log2 K.

On the basis of multiplications alone the fast Fourier transform (FFT) is seen, from
the material in Sect. 7.7.4, to be faster than direct evaluation of the discrete Fourier
transform (DFT) by a factor of 2K/log2K . Moreover its cost increases almost linearly
with the number of samples, whereas that for the DFT increases quadratically. This
is illustrated in Fig. 7.11.

Fig. 7.11. Number of multiplications required in the evaluation of a discrete Fourier transform
directly (DFT) and by means of the fast Fourier transform method (FFT)
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7.7.7
Bit Shuffling and Storage Considerations

Application of the fast Fourier transform requires K to be continuously divisible by
2 (i.e. K = 2m as indicated above). Although other versions of the algorithm can
also be derived (Brigham, 1974) the case of K = 2m is most common, and is used
here.

Inspection of the flow chart in Fig. 7.10 reveals that the order of the data fed into
the algorithm needs to be rearranged before the technique can be employed. This can
be achieved very simply by a process known as bit shuffling. To do this the index
of the input samples is expressed in binary notation (see Appendix C), the binary
digits are reversed, and the new binary number converted back to decimal form, as
illustrated in the following for K = 8.

X(0) → X(000) → X(000) → X(0)

X(1) X(001) X(100) X(4)

X(2) X(010) X(010) X(2)

X(3) X(011) X(110) X(6)

X(4) X(100) X(001) X(1)

X(5) X(101) X(101) X(5)

X(6) X(110) X(011) X(3)

X(7) X(111) X(111) X(7)

Apart from the immense savings in time, use of the FFT also leads to a savings
in memory. Apart from storing the K/2 values of Wr the entire computation can be
carried out using a complex vector of length K + 1. This is because there exist pairs
of elements in each vector or column of the operation whose values are computed
from numbers stored in the same pair of locations in the previous column.

7.8
The Discrete Fourier Transform of an Image

7.8.1
Definition

The previous sections have treated functions with a single independent variable. That
variable could have been time, or even position along a line of an image. We now need
to turn our attention to functions with two independent variables, to allow Fourier
transforms of images to be determined. Despite this apparent increase in complexity
we will find that full advantage can be taken of the material of the previous sections.
Let

φ(i, j), i, j = 0, . . . K − 1 (7.21)

be the brightness of a pixel at location i, j in an image of K ×K pixels. The Fourier
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transform of the image, in discrete form, is described by

Φ(r, s) =
K−1∑
i=0

K−1∑
j=0

φ(i, j) exp [−j2π(ir + js)/K]. (7.22)

An image can be reconstructed from its transform according to

φ(i, j) = 1

K2

K−1∑
i=0

K−1∑
j=0

Φ(r, s) exp [+j2π(ir + js)/K]. (7.23)

7.8.2
Evaluation of the Two Dimensional, Discrete Fourier Transform

Equation (7.22) can be rewritten as

Φ(r, s) =
K−1∑
i=0

Wir
K−1∑
j=0

φ(i, j) Wjs (7.24)

with W = e−j2π/K as before. The term involving the right hand sum can be recog-
nised as the one dimensional discrete Fourier transform

Φ(i, s) =
K−1∑
j=0

Φ(i, j) Wjs, i = 0, ...K − 1. (7.25)

In fact it is the one dimensional transform of the ith row of pixels in the image. The
result of this operation is that the rows of an image are replaced by their Fourier
transforms; the transformed pixels are then addressed by the spatial frequency index
s across a row rather than by the positional index j . Using (7.25) in (7.24) gives

Φ(r, s) =
K−1∑
i=0

Φ(i, s) Wir (7.26)

which is the one dimensional discrete Fourier transform of the sth column of the
image, after the row transforms of (7.25) have been performed.

Thus, to compute the two dimensional Fourier transform of an image, it is only
necessary to transform each row individually to generate an intermediate image, and
then transform this by column to yield the final result. Both the row and column trans-
forms would be carried out using the fast Fourier transform algorithm of Sect. 7.7.5.
From the information provided in Sect. 7.7.6 it can be seen therefore that the number
of multiplications required to transform an image is K2 log2 K .

7.8.3
The Concept of Spatial Frequency

Entries in the Fourier transformed image Φ(r, s) represent the composition of the
original image in terms of spatial frequency components, both vertically and hori-
zontally. Spatial frequency is the image analog of the frequency of a signal in time.
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Fig. 7.12. Illustration of the peri-
odic nature of the two dimensional
discrete Fourier transform, showing
how an array centred on Φ(0, 0) is
chosen for symmetrical display pur-
poses

A sinusoidal signal with high frequency alternates rapidly, whereas a low frequency
signal changes slowly with time. Similarly, an image with high spatial frequency,
say in the horizontal direction, exhibits frequent changes of brightness with posi-
tion horizontally. A picture of a crowd of people would be a particular example.
By comparison a head and shoulders view of a person is likely to be characterised
mainly by low spatial frequencies. Typically an image is composed of a collection
of both horizontal and vertical spatial frequency components of differing strengths
and these are what the discrete Fourier transform indicates. The upper left hand pixel
in Φ(r, s) – i.e. Φ(0, 0)− is the average brightness value of the image. This is the
component in the spectrum with zero frequency in both directions. Thereafter pixels
of Φ(r, s) both horizontally and vertically represent components with frequencies
that increment by 1/K where the original image is of size K ×K . Should the scale of
the image be known then the spatial frequency increment can be calibrated in terms
of metres−1. For example the increment in spatial frequency for a 512 × 512 pixel
image that covers 15.36 km (i.e. Landsat TM) is 65 × 10−6 m−1.

In Sect. 7.7.3 it is shown that the one dimensional discrete Fourier transform
is periodic with period K . The same is true of the discrete two dimensional form.
Indeed the K × K pixels of Φ(r, s) computed according to (7.22) can be viewed
as one period of an infinite periodic two dimensional array in the manner depicted
in Fig. 7.12. It is also shown that the amplitude of the discrete Fourier transform is
symmetric about K/2. Similarly Φ(r, s) is symmetric about its centre. This can be
interpreted by implying that no new amplitude information is shown by displaying
pixels horizontally and vertically beyond K/2. Rather than ignore them (since their
accompanying phase is important) the display is adjusted in the manner shown in
Fig. 7.12 to bring Φ(0, 0) to the centre. In this way the pixel at the centre of the Fourier
transform array represents the image average brightness value. Pixels away from the
centre represent the proportions of increasing spatial frequency components in the
image. This is the usual method of presenting two dimensional image transforms.
Examples of spectra displayed in this manner are given in Fig. 7.13. To make visible
components with smaller amplitudes, a logarithmic amplitude scaling has been used,
according to (Gonzalez and Woods, 1992)

D(r, s) = log [1 + |Φ(r, s)|].
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a

b

c
Fig. 7.13. Illustrations of Fourier transforms of images. a Single square; b Bar pattern;
c Hymap image

7.8.4
Image Filtering for Geometric Enhancement

The high spatial frequency content of an image is that associated with frequent
changes of brightness with position. Edges, lines and some types of noise are exam-
ples of high frequency data. In contrast, gradual changes of brightness with position,
such as associated with more general tonal variations, account for the low frequency
content in the spectrum. Since ranges of spatial frequency are identified with regions
in the spectrum we can envisage how the spectrum of an image could be altered to
produce different geometric enhancements of the image itself. For example, if the
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region near the centre of the spectrum is removed, leaving behind only the high fre-
quencies, and the image is then reconstructed from the modified spectrum, a version
containing only edges and line-like features will be produced. On the other hand, if
the high frequency components are removed, leaving behind only the region near the
centre of the spectrum, the reconstructed image will appear smoothed, since edges,
lines and high frequency noise will have been deleted.

Modification of the spectrum in the manner just described can be expressed as a
multiplicative operation:

Y (r, s) = Φ(r, s)H(r, s) for all r, s (7.27)

where H(r, s) is the filter function and Y (r, s) is the new spectrum. To implement
simple sharpening or smoothing as described above H(r, s) would be set to 0 for those
frequency components to be removed and 1 for those components to be retained. Of-
ten sharpening is called high pass filtering, and smoothing low pass filtering, because
of the nature of the modification to the spectrum. Both can be implemented also with
the template methods of Chap. 5. However (7.27) allows more complicated filtering
operations to be carried out. As an example, a specific band of spatial frequency
could be excluded readily. H(r, s) can also be chosen to have values other than 0
and 1 to allow more versatile modification of the spectrum.

The overall process of geometric enhancement via the frequency domain involves
three steps. First, the image has to be Fourier transformed to produce its spectrum.
Secondly, the spectrum is modified according to (7.27). Finally the image is recon-
structed from the modified spectrum using (7.23), which can also be implemented
by rows and columns. Together these three operations require 2K2 log2 K + K2

multiplications, as used in Sect. 5.4 to compare this approach to that based upon
simple templates.

7.8.5
Convolution in Two Dimensions

The convolution theorem for functions (Sect. 7.5.3) has a two dimensional counter-
part, again in two forms. These are:

If

y(i, j) = φ(i, j) ∗ h(i, j)

then

Y (r, s) = Φ(r, s) H(r, s) (7.28a)

and, if

y(i, j) = φ(i, j) h(i, j)

then

Y (r, s) = Φ(r, s) ∗ H(r, s). (7.28b)
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Unlike (7.10b) there is no 1/2π scaling factor here since the spatial frequency vari-
ables r and s are equivalent to frequency f in Hz and not the radian frequency ω in
rad · s−1 used in (7.10b).

The convolution operation implied in (7.28) is defined by (5.3). However when
digital images are of concern its discrete version is of interest. This is defined, in the
image domain, as

y(i, j) =
∑
m

∑
n

φ(m, n)h(i − m, j − n) (7.29)

where m and n are dummy variables. As with one dimensional convolution described
in Sect. 7.5.1 evaluation of (7.29) requires that one function, in this case the filter
function, be folded about the origin (which in two dimensions amounts to a 180◦ rota-
tion) to produce h(−m, −n) and then delayed by variable amounts i, j . The delayed
folded version is then multiplied pixel by pixel with the image φ(m, n) and the sum
over all spectral pixels taken. This produces one pixel y(i, j) in the modified image.

Equation (7.28) implies that any of the geometric enhancement operations that
can be carried out by modifying the spectrum can also be carried out by performing a
convolution between the image and the inverse Fourier transform of the filter function
H(r, s). Conversely, operations such as simple mean value filtering with an M × N

template as described in Sect. 5.5.1, can also be described in the spatial frequency
domain. This requires the Fourier transform of the template to be found. To do this
requires the template to be regarded as of the same dimensions as the image but with
a value of zero everywhere except for a set of M × N pixels with the appropriate
non-zero value.

7.9
Concluding Remarks

Geometric modification of an image via the frequency domain is a particularly pow-
erful technique owing to the ease with which the filter function H(r, s) may be de-
signed. The material presented in this Chapter has been intended as an introduction
to the concepts and operations involved. For the user contemplating using Fourier
domain methods, several other issues should be taken into consideration including
the use of so-called window functions. This is illustrated most easily by a return to
the material on sampling in Sect. 7.6. In that section it was noted that a sampled func-
tion could be regarded as the unsampled version multiplied by an infinite periodic
sequence of impulses. The spectrum of the infinite set of samples so produced is the
spectrum of the original function convolved with the spectrum of the sequence of
impulses as shown in Fig. 7.6. However in practice it is not possible to take an infinite
number of samples of a function. Instead sampling is commenced at a given time and
terminated after some period τ . This finite time sampling window can be considered
as a long pulse of unit amplitude and duration τ that multiplies the infinite sequence
of samples. The spectrum of the set of samples is, as a consequence, modified by
being convolved by the spectrum of the sampling window. Since the window is a
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long pulse, its Fourier transform is as shown in Fig. 7.4 although compressed to near
the origin. If the sampling duration is long enough this approximates an impulse and
there is little effect on the spectrum. For shorter sampling times however the side-
lobes in Fig. 7.4b cause distortion of the spectrum. To minimise this effect sampling
windows different to a long pulse are sometimes used. A good consideration of these
is found in Brigham (1974).

In the preceding sections we have referred to the Fourier transform approach
as a means for geometric enhancement since it can implement operations such as
sharpening and smoothing. In the material of Chapter Five these are referred to ex-
plicitly as neighbourhood operations. To appreciate that the Fourier transform is also
a neighbourhood operation consider the flow chart for the fast Fourier transform
implementation in Fig. 7.10. If we pick one output value – i.e. one point on the spec-
trum – it can be traced back through the flow chart and be seen to have a contribution
from every one of the input samples. In a similar manner the pixels in the Fourier
transform of an image have contributions from all of the pixels in the original image.

Other transformations also exist, perhaps the most notable in the past few years
being the wavelet transform. The theory of the wavelet transformation can be quite
detailed, especially if generalised beyond the field of real functions. However, several
excellent treatments are available when the transform is to be applied to real image
data, perhaps the most accessible of which is that given by Castleman (1996).

The wavelet transform is important in so far that it provides a compact description
of signals (or images) that are limited in time (or spatial extent). The following
introduces the concept; Castleman should be consulted for details, including how
the transform is defined, and how it can be used and computed in practice. It finds
application in image compression and coding, and in the detection of localised image
features.

Suppose you listen to an organ playing a single, pure tone. As a function of time it
will be sinusoidal for as long as the key is pressed. We could, if we wished, envisage
that the sinusoid started at minus infinity and goes to plus infinity in time. It is the
simplest of all signals in terms of Fourier analysis and its Fourier series is a single
frequency (with positive and negative frequency components) as an application of
(7.7b) will show.

Now suppose you hear a piano play a single note. Rather than lasting for all time,
the time waveform of the piano note would be a time limited sinusoid.We can still find
its Fourier components – i.e. the set of frequencies it is composed of, by noting that it
is the product of an infinitely long sinusoid and the unit pulse waveform of Fig. 7.4a.
Application of (7.10b) and the material of Sect. 7.5.2 shows that its spectrum will be
the function of Fig. 7.4b but with its “origin” shifted to the frequency of the sinusoid.
The spectrum of the time limited signal is now unlimited, although it does drop off
quickly as frequency goes to plus and minus infinity.

To represent short time signals, like the piano note, by a Fourier series or trans-
form, although theoretically acceptable, is cumbersome.Yet that is a problem because
many signals (such as speech) consists of limited time signals, just as images are
also limited spatially.
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The invention of the wavelet – i.e. a small wavelike signal that is limited in time,
has a frequency-like property and is defined to occur at a certain time – is meant to
make the description of such signals easier and to assist in the identification of signal
characteristics that occur at particular times. In the case of images, wavelets help in
the description of properties that are highly localised such as edges and lines.

References for Chapter 7

Treatments of digital image processing in the fields of electrical engineering and computer
science invariably contain detailed considerations of the use of the Fourier transform and
frequency domain techniques for geometric modification of image data. Particular texts that
could be consulted include Castleman (1996), Gonzalez and Woods (1992) and Moik (1980).
An excellent presentation of the discrete Fourier transform, discrete convolution and the fast
Fourier transform algorithm will be found in Brigham (1974, 1988). While Brigham relates
to the one dimensional case it will be clear from the material in Sect. 7.8.2 above that it can
be used also with images.

E.O. Brigham, 1974: The Fast Fourier Transform. N.J. Prentice-Hall.
E.O. Brigham, 1988: The Fast Fourier Transform and its Applications. N.J. Prentice-Hall.
K.R. Castleman, 1996: Digital Image Processing. N.J. Prentice-Hall.
R.C. Gonzalez and R.E. Woods, 1992: Digital Image Processing. Mass. Addison-Wesley.
C.D. McGillem and G.R. Cooper, 1984: Continous and Discrete Signal and System Analysis.

N.Y. Holt, Rinehart and Winston.
J.G. Moik, 1980: Digital Processing of Remotely Sensed Images. Washington, NASA.
A. Papoulis, 1980: Circuits and Systems: A Modem Approach. Tokyo, Holt-Saunders.

Problems

7.1 Compute the discrete Fourier transform of the square wave shown in Fig. 7.3 using
K = 2, 4 and 8 samples per period of the waveform respectively. You can use the flow chart
of Fig. 7.10 to help in this.

7.2 Compute the discrete Fourier transform of the unit pulse shown in Fig. 7.4. Use respectively
K = 2, 4 and 8 samples over a time interval equal to 8a, where 2a is the width of the pulse as
shown in the Figure. Compare the results with those obtained in problem 7.1.

7.3 (a) A common technique for smoothing an image is to compute averages over square or
rectangular windows as discussed in Sect. 5.5. Consider a 3 × 1 smoothing template used to
smooth a single line of image data in the manner of Fig. 5.4. Determine the corresponding
filter function in the spatial frequency domain by finding the discrete Fourier transform of the
template. You may find the material of Fig. 7.4 to be of value.
(b) Imagine an ideal low pass filter function in the spatial frequency domain that could be
used to smooth just the lines of an image. Determine the corresponding function in the image
domain by computing the inverse Fourier transform of the ideal filter. Taking into account the
discrete pixel nature of the image, approximate the inverse transform by an appropriate one
dimensional template.
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7.4 Verify the results in Sect. 7.5.2 graphically.

7.5 (a) The periodic sequence of impulses of (7.11) is an idealised sampling function. In prac-
tice it is not possible to take infinitessimally short samples of a function; rather the samples
will have a finite, albeit small duration. This could be modelled mathematically by replacing
�(t) in (7.12) by a periodic pulse waveform. This periodic sequence of pulses can be repre-
sented by the convolution of a single pulse with the periodic sequence of impulses in (7.11).
With this in mind describe what modifications are needed to Fig. 7.6 to account for samples
of finite duration.
(b) Suppose the total period of sampling is equivalent to ten sample intervals. Describe the
effect this has on Fig. 7.6.

7.6 In Fig. 7.6a suppose the function f (t) is a sinewave of frequency B Hz. Its frequency
spectrum will consist of two impulses, one at + B Hz and the other at −B Hz. Produce the
spectrum of the sampled sinusoid if only three samples are taken every two periods. Suppose
the waveform is then reconstructed by feeding the samples through a low pass filter that will
pass all frequency components unattenuated, up to 1/2T Hz, where T is the sampling interval,
and will exclude all components with frequencies in excess of 1/2T Hz. Describe the shape of
the reconstructed signal; this will give an appreciation of aliasing distortion.



8
Supervised Classification Techniques

The purpose of this chapter is to present the algorithms used for the supervised
classification of single sensor remote sensing image data.

When data from a variety of sensors or sources (such as found in the integrated
spatial data base of a Geographical Information System) requires analysis, more
sophisticated tools may be required. These are the subject of Chap. 12 which deals
with the topic of Multisource Classification.

8.1
Steps in Supervised Classification

Supervised classification is the procedure most often used for quantitative analysis of
remote sensing image data. It rests upon using suitable algorithms to label the pixels
in an image as representing particular ground cover types, or classes. A variety of
algorithms is available for this, ranging from those based upon probability distribu-
tion models for the classes of interest to those in which the multispectral space is
partitioned into class-specific regions using optimally located surfaces. Irrespective
of the particular method chosen, the essential practical steps usually include:

1. Decide the set of ground cover types into which the image is to be segmented.
These are the information classes and could, for example, be water, urban regions,
croplands, rangelands, etc.

2. Choose representative or prototype pixels from each of the desired set of classes.
These pixels are said to form training data. Training sets for each class can be
established using site visits, maps, air photographs or even photointerpretation of
a colour composite product formed from the image data. Often the training pixels
for a given class will lie in a common region enclosed by a border. That region is
then often called a training field.

3. Use the training data to estimate the parameters of the particular classifier algo-
rithm to be used; these parameters will be the properties of the probability model
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used or will be equations that define partitions in the multispectral space. The set
of parameters for a given class is sometimes called the signature of that class.

4. Using the trained classifier, label or classify every pixel in the image into one
of the desired ground cover types (information classes). Here the whole image
segment of interest is typically classified. Whereas training in Step 2 may have
required the user to identify perhaps 1% of the image pixels by other means, the
computer will label the rest by classification.

5. Produce tabular summaries or thematic (class) maps which summarise the results
of the classification.

6. Assess the accuracy of the final product using a labelled testing data set.

In practice it might be necessary to decide, on the basis of the results obtained
at Step 6, to refine the training process in order to improve classification accuracy.
Sometimes it might even be desirable to classify just the training samples themselves
to ensure that the signatures generated at Step 3 are adequate.

It is our objective now to consider the range of algorithms that could be used in
3 and 4. In so doing it will be assumed that the information classes each consists
of only one spectral class, so that the two names will be used synonomously. (See
Chap. 3 for a discussion of the two class types.) By making this assumption, problems
with establishing sub-classes will not distract from the algorithm development to be
given. Handling sub-classes is taken care of explicitly in Chaps. 9 and 11.

In the following sections it is assumed that the reader is familiar at least with the
sections on quantitative analysis contained in Chap. 3. This relates particularly to
definitions and terminology.

8.2
Maximum Likelihood Classification

Maximum likelihood classification is the most common supervised classification
method used with remote sensing image data. This is developed in the following in
a statistically acceptable manner; it can be derived however in a more general and
rigorous manner and this is presented for completeness in Appendix F. The present
approach is sufficient though for most remote sensing exercises.

8.2.1
Bayes’ Classification

Let the spectral classes for an image be represented by

ωi, i = 1, . . . M

where M is the total number of classes. In trying to determine the class or category
to which a pixel vector x belongs it is strictly the conditional probabilities

p(ωi |x), i = 1, . . . M
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that are of interest. The measurement vector x is a column of brightness values for
the pixel. It describes the pixel as a point in multispectral space with co-ordinates
defined by the brightnesses, as shown in the simple two-dimensional example of
Fig. 3.5. The probability p(ωi |x) gives the likelihood that the correct class is ωi for
a pixel at position x. Classification is performed according to

x ∈ ωi, if p(ωi |x) > p(ωj |x) for all j 	= i (8.1)

i.e., the pixel at x belongs to class ωi if p(ωi |x) is the largest. This intuitive decision
rule is a special case of a more general rule in which the decisions can be biased
according to different degrees of significance being attached to different incorrect
classifications. The general approach is called Bayes’classification and is the subject
of the treatment in Appendix F.

8.2.2
The Maximum Likelihood Decision Rule

Despite its simplicity, the p(ωi |x) in (8.1) are unknown. Suppose however that
sufficient training data is available for each ground cover type. This can be used
to estimate a probability distribution for a cover type that describes the chance of
finding a pixel from class ωi , say, at the position x. Later the form of this distribution
function will be made more specific. For the moment however it will be retained
in general terms and represented by the symbol p(x|ωi). There will be as many
p(x|ωi) as there are ground cover classes. In other words, for a pixel at a position x

in multispectral space a set of probabilities can be computed that give the relative
likelihoods that the pixel belongs to each available class.

The desired p(ωi |x) in (8.1) and the available p(x|ωi) - estimated from training
data – are related by Bayes’ theorem (Freund, 1992):

p(ωi |x) = p(x|ωi) p(ωi)/p(x) (8.2)

where p(ωi) is the probability that class ωi occurs in the image. If, for example, 15%
of the pixels of an image happen to belong to class ωi then p(ωi) = 0.15; p(x) in
(8.2) is the probability of finding a pixel from any class at location x. It is of interest
to note in passing that

p(x) =
M∑
i=1

p(x|ωi) p(ωi),

although p(x) itself is not important in the following. The p(ωi) are called a priori or
prior probabilities, since they are the probabilities with which class membership of a
pixel could be guessed before classification. By comparison the p(ωi |x) are posterior
probabilities. Using (8.2) it can be seen that the classification rule of (8.1) is:

x ∈ ωi if p(x|ωi)p(ωi) > p(x|ωj )p(ωj ) for all j 	= i (8.3)

where p(x) has been removed as a common factor. The rule of (8.3) is more ac-
ceptable than that of (8.1) since the p(x|ωi) are known from training data, and it
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is conceivable that the p(ωi) are also known or can be estimated from the analyst’s
knowledge of the image. Mathematical convenience results if in (8.3) the definition

gi(x) = ln {p(x|ωi) p(ωi)}
= ln p(x|ωi) + ln p(ωi)

(8.4)

is used, where ln is the natural logarithm, so that (8.3) is restated as

x ∈ ωi if gi(x) > gj (x) for all j 	= i (8.5)

This is, with one modification to follow, the decision rule used in maximum likelihood
classification; the gi(x) are referred to as discriminant functions.

8.2.3
Multivariate Normal Class Models

At this stage it is assumed that the probability distributions for the classes are of the
form of multivariate normal models.This is an assumption, rather than a demonstrable
property of natural spectral or information classes; however it leads to mathematical
simplifications in the following. Moreover it is one distribution for which properties
of the multivariate form are well-known.

In (8.4) therefore, it is now assumed for N bands that (see Appendix E)

p(x|ωi) = (2π)−N/2 |Σi |−1/2 exp {− 1
2 (x − mi )

t Σ−1
i (x − mi )} (8.6)

where mi and Σi are the mean vector and covariance matrix of the data in class
ωi . The resulting term −N/2 ln (2π) is common to all gi(x) and does not aid
discrimination. Consequently it is ignored and the final form of the discriminant
function for maximum likelihood classification, based upon the assumption of normal
statistics, is:

gi(x) = ln p(ωi) − 1
2 ln |Σi | − 1

2 (x − mi )
t Σ−1

i (x − mi ) (8.7)

Often the analyst has no useful information about the p(ωi), in which case a situation
of equal prior probabilities is assumed; as a result ln p(ωi) can be removed from
(8.7) since it is then the same for all i. In that case the 1/2 common factor can also
be removed leaving, as the discriminant function:

gi(x) = −ln|Σi | − (x − mi )
t Σ−1

i (x − mi ) (8.8)

Implementation of the maximum likelihood decision rule involves using either
(8.7) or (8.8) in (8.5). There is a further consideration however concerned with
whether any of the available labels or classes is appropriate. This relates to the use
of thresholds as discussed in Sect. 8.2.5 following.

8.2.4
Decision Surfaces

As a means for assessing the capabilities of the maximum likelihood decision rule it
is of value to determine the essential shapes of the surfaces that separate one class
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from another in the multispectral domain. These surfaces, albeit implicit, can be
devised in the following manner.

Spectral classes are defined by those regions in multispectral space where their
discriminant functions are the largest. Clearly these regions are separated by surfaces
where the discriminant functions for adjoining spectral classes are equal. The ith and
j th spectral classes are separated therefore by the surface

gi(x) − gj (x) = 0.

This is referred to as a decision surface since, if all the surfaces separating spectral
classes are known, decisions about the class membership of a pixel can be made on
the basis of its position relative to the complete set of surfaces.

The construction (x − mi )
t Σ−1

i (x − mi ) in (8.7) and (8.8) is a quadratic func-
tion of x. Consequently the decision surfaces implemented by maximum likelihood
classification are quadratic and thus take the form of parabolas, circles and ellipses.
Some indication of this can be seen in Fig. 3.8.

8.2.5
Thresholds

It is implicit in the foregoing development that pixels at every point in multispectral
space will be classified into one of the available classes ωi , irrespective of how small
the actual probabilities of class membership are. This is illustrated for one dimen-
sional data in Fig. 8.1a. Poor classification can result as indicated. Such situations
can arise if spectral classes (between 1 and 2 or beyond 3) have been overlooked or,
if knowing other classes existed, enough training data was not available to estimate
the parameters of their distributions with any degree of accuracy (see Sect. 8.2.6 fol-
lowing). In situations such as these it is sensible to apply thresholds to the decision
process in the manner depicted in Fig. 8.1b. Pixels which have probabilities for all
classes below the threshold are not classified.

In practice, thresholds are applied to the discriminant functions and not the prob-
ability distributions, since the latter are never actually computed. With the incorpo-
ration of a threshold therefore, the decision rule of (8.5) becomes

x ∈ ωi if gi(x) > gj (x) for all j 	= i (8.9a)

and gi(x) > Ti (8.9b)

where Ti is the threshold seen to be significant for spectral class ωi . It is now nec-
essary to consider how Ti can be estimated. From (8.7) and (8.9b) a classification is
acceptable if

ln p(ωi) − 1
2 ln |Σi | − 1

2 (x − mi )
t Σ−1

i (x − mi ) > Ti

i.e.

(x − mi )
t Σ−1

i (x − mi ) < −2Ti − ln |Σi | + 2 ln p(ωi) (8.10)
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Fig. 8.1. a Illustration
of poor classification for
patterns lying near the
tails of the distribution
functions of all spec-
tral classes; b Use of a
threshold to remove poor
classification

The left hand side of (8.10) has a χ2 distribution with N degrees of freedom, if x is
(assumed to be) distributed normally (Swain and Davis, 1978). N is the dimension-
ality of the multispectral space. As a result χ2 tables can be consulted to determine
that value of (x − mi )

t Σ−1
i (x − mi ) below which a desired percentage of pixels

will exist (noting that larger values of that quadratic form correspond to pixels lying
further out in the tails of the normal probability distribution). This is depicted in
Fig. 8.2.

Fig. 8.2. Use of the χ2 distribution for obtaining classifier thresholds



8.2 Maximum Likelihood Classification 199

As an example of how this is used consider the need to choose a threshold such
that 95% of all pixels in a class will be classified (i.e. such that the 5% least likely
pixels for each spectral class will be rejected). χ2 tables show that 95% of all pixels
have χ2 values (in Fig. 8.2) less than 9.488. Thus, from (8.10)

Ti = −4.744 − 1

2
ln |Σi | + ln p(ωi)

which thus can be calculated from a knowledge of the prior probability and covariance
matrix of the ith spectral class.

8.2.6
Number of Training Pixels Required for Each Class

Sufficient training pixels for each spectral class must be available to allow reasonable
estimates to be obtained of the elements of the class conditional mean vector and
covariance matrix. For an N dimensional multispectral space the covariance matrix
is symmetric of size N × N . It has, therefore, 1

2N(N + 1) distinct elements that
need to be estimated from the training data. To avoid the matrix being singular at
least N(N + 1) independent samples is needed. Fortunately, each N dimensional
pixel vector in fact contains N samples (one in each waveband); thus the minimum
number of independent training pixels required is (N+1). Because of the difficulty in
assuring independence of the pixels, usually many more than this minimum number
is selected. Swain and Davis (1978) recommend as a practical minimum that 10N

training pixels per spectral class be used, with as many as 100N per class if possible.
For data with low dimensionality (say up to 5 or 6 bands) those numbers can usually
be achieved, but for hyperspectral data sets finding enough training pixels per class
is extremely difficult. Section 13.5 considers this problem in some detail.

8.2.7
A Simple Illustration

As an example of the use of maximum likelihood classification, the segment of
Landsat multispectral scanner image shown in Fig. 8.3 is chosen. This is a 256×276
pixel array of image data in which four broad ground cover types are evident. These
are water, fire burn, vegetation and “developed” land (urban). Suppose we want to
produce a thematic map of these four cover types in order to enable the area and
extent of the fire burn to be evaluated.

The first step is to choose training data. For such a broad classification, suitable
sets of training pixels for each of the four classes are easily identified visually in the
image data. Figure 8.3 also shows the locations of four training fields used for this
purpose. Sometimes, to obtain a good estimate of class statistics it may be necessary
to choose several training fields for the one cover type, located in different regions
of the image.

The four-band signatures for each of the four classes, as obtained from the training
fields, are given in Table 8.1. The mean vectors can be seen to agree generally
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Fig. 8.3. Image segment to be
classified, consisting of a mixture
of natural vegetation, waterways,
urban development and vegetation
damaged by fire. Four training
regions are identified in solid
colour. These are water (violet),
vegetation (green), fire burn (red)
and urban (dark blue in the bottom
right hand corner). Pixels from
these were used to generate the
signatures in Table 8.1

Fig. 8.4. Thematic map produced
by maximum likelihood classifi-
cation. Blue represents water, red
is fire damaged vegetation, green
is natural vegetation and yellow
is urban development

with known spectral reflectance characteristics of the cover types. Also the class
variances (diagonal elements in the covariance matrices) are small for water as might
be expected but on the large side for the developed/urban class, indicative of its
heterogeneous nature.

Using these signatures in a maximum likelihood algorithm to classify the four
bands of the image in Fig. 8.3, the thematic map shown in Fig. 8.4 is obtained.
The four classes, by area, are given in Table 8.2. Note that there are no unclassified
pixels, since a threshold was not used in the labelling process. The area estimates are
obtained by multiplying the number of pixels per class by the effective area of a pixel.
In the case of the Landsat 2 multispectral scanner the pixel size was 0.4424 hectares.
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Table 8.1. Class signatures generated from the training areas in Fig. 8.3. Numbers are on a
scale of 0 to 255 (8 bit)

Table 8.2. Tabular summary of the thematic map of Fig. 8.4

8.3
Minimum Distance Classification

8.3.1
The Case of Limited Training Data

The effectiveness of maximum likelihood classification depends upon reasonably
accurate estimation of the mean vector m and the covariance matrix Σ for each
spectral class. This in turn is dependent upon having a sufficient number of training
pixels for each of those classes. In cases where this is not so, inaccurate estimates of
the elements of Σ result, leading to poor classification. When the number of training
samples per class is limited it can be more effective to resort to a classifier that does
not make use of covariance information but instead depends only upon the mean
positions of the spectral classes, noting that for a given number of samples these
can be more accurately estimated than covariances. The so-called minimum distance
classifier, or more precisely, minimum distance to class means classifier, is such an
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approach. With this classifier, training data is used only to determine class means;
classification is then performed by placing a pixel in the class of the nearest mean.

The minimum distance algorithm is also attractive since it is a faster technique
than maximum likelihood classification, as will be seen in Sect. 8.5. However be-
cause it does not use covariance data it is not as flexible as the latter. In maximum
likelihood classification each class is modelled by a multivariate normal class model
that can account for spreads of data in particular spectral directions. Since covariance
data is not used in the minimum distance technique class models are symmetric in
the spectral domain. Elongated classes therefore will not be well modelled. Instead
several spectral classes may need to be used with this algorithm where one might
be suitable for maximum likelihood classification. This point is developed further in
the case studies of Chap. 11.

8.3.2
The Discriminant Function

The discriminant function for the minimum distance classifier is developed as fol-
lows.

Suppose mi , i = 1, . . . M are the means of the M classes determined from
training data, and x is the position of the pixel to be classified. Compute the set of
squared Euclidean distances of the unknown pixel to each of the class means, defined
in vector form as

d(x, mi )
2 = (x − mi )

t (x − mi )

= (x − mi ) · (x − mi ), i = 1, . . . M

Expanding the product gives

d(x, mi )
2 = x · x − 2mi · x + mi · mi .

Classification is performed on the basis of

x ∈ ωi if d(x, mi )
2 < d(x, mj )

2 for all j 	= i

Note that x · x is common to all d(x, mj )
2 and thus can be removed. Moreover,

rather than classifying according to the smallest of the remaining expressions, the
signs can be reversed and classification performed on the basis of

x ∈ ωi if gi(x) > gj (x) for all j 	= i (8.11a)

where

gi(x) = 2mi · x − mi · mi , etc. (8.11b)

Equation (8.11b) defines the discriminant function for the minimum distance clas-
sifier. In contrast to the maximum likelihood approach the decision surfaces for this
classifier, separating the distinct spectral class regions in multispectral space, are
linear, as seen in Sect. 8.3.4 following. The higher order decision surface possible
with maximum likelihood classification renders it more powerful for partitioning
multispectral space than the linear surfaces for the minimum distance approach.
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Nevertheless, as noted earlier, minimum distance classification is of value when the
number of training samples is limited and, in such a case, can lead to better accuracies
than the maximum likelihood procedure.

Minimum distance classification can be performed also using distance mea-
sures other than Euclidean (Wacker and Landgrebe, 1972); notwithstanding this,
algorithms based upon Euclidean distance definitions are those generally imple-
mented in software packages for remote sensing image analysis, such as Multispec
(http://dynamo.ecn.purdue.edu/∼biehl/MultiSpec), ENVI (http://www.rsinc.com)
and ERMapper (http://www.ermapper.com).

8.3.3
Degeneration of Maximum Likelihood
to Minimum Distance Classification

The major difference between the minimum distance and maximum likelihood clas-
sifiers lies in the use, by the latter, of the sample covariance information. Whereas
the minimum distance classifier labels a pixel as belonging to a particular class on
the basis only of its distance from the relevant mean, irrespective of its direction
from that mean, the maximum likelihood classifier modulates its decision with di-
rection, based upon the information in the covariance matrix. Furthermore the entry
− 1

2 ln |Σi | in its discriminant function shows explicitly that patterns have to be closer
to some means than others to have equivalent likelihoods of class membership. As
a result substantially superior performance is expected of the maximum likelihood
classifier, in general. The following situation however warrants consideration since
then there is no advantage in maximum likelihood procedures. It could occur in prac-
tice when class covariance is dominated by systematic noise rather than by natural
spectral spreads of the individual spectral classes.

Consider the covariance matrices of all classes to be diagonal and equal, and the
variances in each component to be identical, so that

Σi = σ 2I for all i.

Under these circumstances the discriminant function for the maximum likelihood
classifier, from (8.7) becomes

gi(x) = 1

2
ln σ 2N − 1

2σ 2 (x − mi )
t (x − mi ) + ln p(ωi)

The ln σ 2N term is now common to all classes and can be ignored, as can the x · x

term that results from the scalar product, leaving

gi(x) = 1

2σ 2 {2mi · x − mi · mi} + ln p(ωi)

If the ln p(ωi) are ignored, on the basis of equal prior probabilities, then the 1/2σ 2

factor can be removed giving

gi(x) = 2mi · x − mi · mi
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which is the discriminant function for the minimum distance classifier. Thus min-
imum distance and maximum likelihood classification are equivalent for identical
and symmetric spectral class distributions.

8.3.4
Decision Surfaces

The implicit surfaces in multispectral space separating adjacent classes are defined
by the respective discriminant functions being equal. Thus the surface between the
ith and j th spectral classes is given by

gi(x) − gj (x) = 0

Substituting from (8.11b) gives

2(mi − mj ) · x − (mi · mi − mj · mj ) = 0

This defines a linear surface – often called a hyperplane in more than three di-
mensions. In contrast therefore to maximum likelihood classification in which the
decision surfaces are quadratic and therefore more flexible, the decision surfaces for
minimum distance classification are linear and more restricted.

8.3.5
Thresholds

Thresholds can be applied to minimum distance classification by ensuring that not
only is a pixel closest to a candidate class but also that it is within a prescribed
distance of that class. Such a technique is used regularly. Often the distance threshold
is specified according to a number of standard deviations from a class mean.

8.4
Parallelepiped Classification

The parallelepiped classifier is a very simple supervised classifier that is, in princi-
ple, trained by inspecting histograms of the individual spectral components of the
available training data. Suppose, for example, that the histograms of one particular
spectral class for two dimensional data are as shown in Fig. 8.5. Then the upper and
lower significant bounds on the histograms are identified and used to describe the
brightness value range for each band for that class. Together, the range in all bands
describes a multidimensional box or parallelepiped. If, on classification, pixels are
found to lie in such a parallelepiped they are labelled as belonging to that class. A
two-dimensional pattern space might therefore be segmented as shown in Fig. 8.6.

While the parallelepiped method is, in principle, a particularly simple classifier
to train and use, it has several drawbacks. One is that there can be considerable
gaps between the parallelepipeds; pixels in those regions will not be classified. By
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Fig. 8.5. Histograms for the components of a two-dimensional set of training data corre-
sponding to a single spectral class. The upper and lower bounds are identified as the edges of
a two-dimensional parallelepiped

Fig. 8.6. An example of a set of two-
dimensional parallelepipeds

Fig. 8.7. Parallelepiped classification
of correlated data showing regions of
inseparability

comparison the minimum distance and maximum likelihood classifiers will label all
pixels in an image, unless thresholding methods are used. Another limitation is that
prior probabilities of class membership are not taken account of; nor are they for
minimum distance classification. Finally, for correlated data there can be overlap of
the parallelepipeds since their sides are parallel to the spectral axes. Consequently
there is some data that cannot be separated, as illustrated in Fig. 8.7.
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8.5
Classification Time Comparison of the Classifiers

Of the three classifiers commonly used with remote sensing image data the par-
allelepiped procedure is the fastest in classification since only comparisons of the
spectral components of a pixel with the spectral dimensions of the parallelepipeds
are required.

For the minimum distance classifier the discriminant function in (8.11b) requires
evaluation for each pixel. In practice 2mi and mi ·mi would be calculated beforehand,
leaving N multiplications and N additions to check the potential membership of a
pixel to one class, where N is the number of components in x.

By comparison, evaluation of the discriminant function for maximum likelihood
classification in (8.7) requires N2 + N multiplications and N2 + 2N + 1 additions,
to check one pixel against one class, given that

−1

2
ln |Σi | + ln p(ωi)

would have been calculated beforehand. Ignoring additions by comparison to mul-
tiplications, the maximum likelihood classifier takes N + 1 times as long as the
minimum distance classifier to perform a classification. It is also significant to note
that classification time, and thus cost, increases quadratically with number of spectral
components for the maximum likelihood classifier but only linearily for minimum
distance and parallelepiped classification. This has particular relevance to feature
reduction (Chap. 10).

8.6
Other Supervised Approaches

8.6.1
The Mahalanobis Classifier

Consider the discriminant function for the maximum likelihood classifier, for the
special case of equal prior probabilities, as defined in (8.8). If the sign of this function
is reversed it can be considered as a distance squared measure since the quadratic
entry has those dimensions and the other term is a constant. Thus we can define

d(x, mi )
2 = ln |Σi | + (x − mi )

tΣ−1
i (x − mi ) (8.12)

and classify on the basis of the smallest d(x, mi ) as for the Euclidean minimum
distance classifier. Thus the maximum likelihood classifier can be regarded as a min-
imum distance-like classifier but with a distance measure that is direction sensitive
and modified according to class.

Consider the case now where all class covariances are equal – i.e. Σi = Σ for
all i. Clearly the ln |Σi | term is now not discriminating and can be ignored. The
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distance measure then reduces to

d(x, mi )
2 = (x − mi )

tΣ−1(x − mi ) (8.13)

Such a classifier is referred to as a Mahalanobis distance classifier, although some-
times the term is applied to the more general measure of (8.12). Mahalanobis dis-
tance is understood as the square root of (8.13). Under the additional constraint that
Σ = σ 2I the Mahalanobis classifier reduces, as before, to the minimum Euclidean
distance classifier.

The advantage of the Mahalanobis classifier over the maximum likelihood pro-
cedure is that it is faster and yet retains a degree of direction sensitivity via the
covariance matrix Σ , which could be a class average or a pooled variance.

8.6.2
Table Look Up Classification

Since the set of discrete brightness values that can be taken by a pixel in each
spectral band is limited, there is a finite, although large, number of pixel vectors in
any particular image. For a given class in that image the number of distinct pixel
vectors may not be very extensive. Consequently a viable classification scheme is
to note the set of pixel vectors corresponding to a given class, using representative
training data, and then use those to classify the image by comparing unknown image
pixels with each pixel in the training data until a match is found. No arithmetic
operations are required and, notwithstanding the number of comparisons that might
be necessary to determine a match, it is a fast classifier. It is referred to as a look
up table approach since the pixel brightnesses are stored in tables that point to the
corresponding classes.

An obvious drawback with this approach is that the chosen training data must
contain one of every possible pixel vector for each class. Should some be missed then
the corresponding pixels in the image will be left unclassified. This is in contrast to
the procedures treated above.

8.6.3
The kNN (Nearest Neighbour) Classifier

A classifier that is particularly simple in concept, but can be time consuming to apply,
is the k-Nearest Neighbour classifier. It assumes that pixels close to each other in
feature space are likely to belong to the same class. In its simplest form an unknown
pixel is labelled by examining the available training pixels in multispectral space
and choosing the class most represented among a pre-specified number of nearest
neighbours. The comparison essentially requires the distances from the unknown
pixel to all training pixels to be computed.

Suppose there are ki neighbours labelled as class ωi out of k nearest neighbours

for a pixel vector x, noting that
M∑
i=1

ki = k where M is the total number of classes.
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In the basic kNN rule we define the discriminant function for the ith class as

gi(x) = ki

and the decision rule is:

x ∈ ωi, if gi(x) > gj (x) for all j 	= i

The basic rule does not take the distance of each neighbour to the current pixel vector
into account and may lead to tied results. An improvement is to distance-weight the
discriminant function:

gi(x) =

ki∑
j=1

1/d(x, x
j
i )

M∑
i=1

ki∑
j=1

1/d(x, x
j
i )

where d(x, x
j
i ) is the spectral distance (commonly Euclidean) between the unknown

pixel vector x and its neighbour x
j
i , the j th of the ki pixels in class ωi .

If the training data for each class is not in proportion to its respective population,
p(ωi), in the image, a Bayesian Nearest-Neighbour rule can be used:

gi(x) = p(x| ωi)p(ωi)

M∑
j=1

p(x| ωj )p(ωj )

= kip(ωi)

M∑
j=1

kjp(ωj )

In the kNN algorithm as many spectral distances as there are training pixels must be
evaluated for each training pixel to be labelled; that requires an impractically high
computational load, especially when the number of spectral bands and/or the number
of training samples is large. The method is not well-suited therefore to hyperspectral
data sets, although it is possible to improve the efficiency of the distance search
process (Dasarathy, 1991).

8.7
Gaussian Mixture Models

In Sect. 3.5 the prospect of information classes being composed of sets of spectral
classes was raised. The material in Sect. 8.2, however, has been derived on the basis
that an information class is composed of a single spectral class that can be represented
by a multidimensional normal distribution. In practice that is rarely the case: in order
to represent the data effectively more than one normally distributed spectral class is
required to model properly the distribution of pixel vectors in a given information
class.

One of the challenges to successful image classification is to find an acceptable
set of spectral classes for each information class. In Sect. 9.1 it is suggested that
clustering algorithms can be used for that purpose, and indeed they can be applied
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very successfully to that end.Another, more theoretically appealing approach is to try
to learn the mixture of spectral classes for each information class from the available
training data, as in the following.

If we assume that a given information class is composed of a number of uni-
modal normally distributed spectral classes, then it is natural to attempt to devise a
(information) class model of the form

f (x) =
C∑

c=1

αcp(x|mc, Σc)

where mc and Σc are the mean vector and covariance matrix of the cth spectral
class conditional normal distribution; the αc are weighting parameters (which sum
to unity) such that the mixture model expressed by f (x) fits the available training
data. The total number of spectral class components is C.

We have to estimate the set of parameters {C, αc, mc, Σc} from the training data,
and that is a considerable challenge in practice. Kuo and Landgrebe (2002) show
how this can be achieved.

8.8
Context Classification

8.8.1
The Concept of Spatial Context

The classifiers treated so far are often referred to as point or pixel-specific classifiers
in that they label a pixel on the basis of its spectral properties alone, with no account
taken of how any neighbouring pixels are labelled. Yet, in any real image, adjacent
pixels are related or correlated, both because imaging sensors acquire significant
portions of energy from adjacent pixels1 and because ground cover types generally
occur over a region that is large compared with the size of a pixel. In an agricultural
area, for example, if a particular image pixel represents wheat it is highly likely
that its neighbouring pixels will also be wheat. This knowledge of neighbourhood
relationships is a rich source of information that is not exploited in simple, traditional
classifiers. In this section we consider the importance of spatial context and see the
benefit of taking it into account when making classification decisions. Not only is the
inclusion of context important because it exploits spatial information, as such, but,
in addition, sensitivity to the correct context for a pixel can improve a thematic map
by helping to remove individual pixel labelling errors that might result from noisy
data, or unusual classifier performance (see Problem 8.6).

Classification methods that take into account the labelling of neighbours when
seeking to determine the most appropriate class for a pixel are said to be context
sensitive, or simply context classifiers. They attempt to develop a thematic map that
is consistent both spectrally and spatially.

1 This is referred to as the point spread function effect, which is discussed in Forster (1982).
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The degree to which adjacent pixels are strongly correlated will depend on the
spatial resolution of the sensor and the scale of natural and cultural regions on the
earth’s surface. Adjacent pixels over an agricultural region will be strongly corre-
lated, whereas for the same sensor, adjacent pixels over a busier, urban region would
not show strong correlation. Likewise, for a given area, neighbouring Landsat MSS
pixels, being larger, may not demonstrate as much correlation as adjacent SPOT HRV
pixels. In general terms, context classification techniques usually warrant consider-
ation when processing higher resolution imagery.

8.8.2
Context Classification by Image Pre-processing

Perhaps the simplest method for exploiting spatial context is to process the image
data before classification in order to modify or enhance its spatial properties. A
median filter (Sect. 5.5.2), for example, will help in reducing salt and pepper noise
that would lead to inconsistent class labels. Moreover, the application of simple
averaging filters (possibly with edge preserving thresholds) can be used to impose
a degree of homogeneity among the brightness values of adjacent pixels thereby
increasing the chance that neighbouring pixels may be given the same label.

An alternative is to generate a separate channel of data that associates spatial
properties with pixels. For example, a texture channel could be added and classifi-
cation carried out (using a suitable algorithm such as the minimum distance rule) on
the combined multispectral and texture channels. Along this line, Gong and Howarth
(1990) have set up a “structural information” channel to bias a classification accord-
ing to the density of high spatial frequency data in order to improve the classification
of image data containing urban segments. The reasoning behind the approach is that
urban regions are characterised by high spatial frequency detail whereas, conversely,
the high frequency detail present in non-urban regions is low. The additional channel
reflects this understanding and accordingly influences the classification which would
otherwise be carried out on the basis of spectral data alone.

One of the more useful spatial pre-processing techniques is that used in the
ECHO classification methodology. In ECHO (Extraction and Classification of Ho-
mogeneous Objects) regions of similar spectral properties are “grown” before clas-
sification is performed. Several region growing techniques are available, possibility
the simplest of which is to aggregate pixels into small regions by comparing their
brightnesses in each channel and then aggregate the small regions into bigger regions
in a similar manner. When this is done, ECHO classifies the regions as single objects
and only resorts to standard maximum likelihood classification when it has to treat
individual pixels that could not be put into regions. Details of ECHO will be found
in Kettig and Landgrebe (1976); it is also available in the Multispec image analysis
software (http://dynamo.ecn.purdue/∼biehl/Multispec/).
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8.8.3
Post Classification Filtering

Once a thematic map has been generated using a simple point classifier some degree
of spatial context can be developed by logically filtering the map. For example, if
the map is examined in 3 × 3 windows, a label at the centre of the window might
be changed to the label most represented in the window. Clearly this must be done
carefully, with the user having some control over the minimum size region of a
given cover type that is acceptable in the filtered image product (Harris, 1985). Post
classification filtering by this approach has been treated by Townsend (1986).

8.8.4
Probabilistic Label Relaxation

Spatial consistency in a classified image product can also be developed using the
process of label relaxation. While it has little theoretical foundation, and is more
complex than the methods outlined in the previous sections, it does allow the spatial
properties of a region to be carried into the classification process in a logically
consistent way.

8.8.4.1
The Basic Algorithm

The process commences by assuming that a classification, based on spectral data
alone, has already been carried out. There is available therefore, for each pixel, a
set of probabilities that describe the chance that the pixel belongs to each of the
possible ground cover classes under consideration. This set of probabilities could be
computed from (8.6) and (8.7) if maximum likelihood classification had been used
first. If another classification method had been employed, then some other assignment
process will be required. It could even be as simple as allocating a high probability
to the most favoured class label and lower probabilities to the rest. Let the set of
probabilities for a pixel (m) currently of interest be represented by

pm(ωi) i = 1, . . . K (8.14)

where K is the total number of classes; pm(ωi) should be read as “the probability
that ωi is the correct class for pixel m.” Note that the full set of pm(ωi) must sum to
unity for a given pixel – viz.∑

i

pm(ωi) = 1.

Suppose now that a neighbourhood is defined surrounding pixel m. This can be
of any size and, in principle, should be large enough to ensure that all the pixels
considered to have any spatial correlation with m are included. For high resolution
imagery this is not practical and simple neighbourhoods such as that shown in Fig. 8.8
are often adopted.
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Fig. 8.8. Definition of a simple neighbourhood about
pixel m

Now assume that a neighbourhood function Qm(ωi) can be found (by means
to be described below) which allows the pixels in the prescribed neighbourhood to
influence the possible classification of pixel m. This influence is exerted by multi-
plying the label probabilities in (8.14) by the Qm(ωi). However, so that the new set
of label probabilities sum to one, these new values are divided by their sum:

p′
m(ωi) = pm(ωi)Qm(ωi)∑

i

pm(ωi)Qm(ωi)
(8.15)

Such a modification is made to the set of label probabilities for all pixels by moving
over the image from its top left hand to bottom right hand corners. In the following
it will be seen that the neighbourhood function Qm(ωi) depends on the label proba-
bilities of the neighbouring pixels, so that if all the pixel probabilities are modified
in the manner just described then the neighbours for any given pixel have also been
altered. Consequently, (8.15) should be applied again to give newer estimates still of
the label probabilities. Indeed, (8.15) is applied as many times as necessary to ensure
that the p′

m(ωi) have stabilised – i.e. that they do not change with further iteration.
It is assumed that the p′

m(ωi) then represent the correct set of label probabilities for
the pixel, having taken account both of spectral data (in the initial determination of
label probabilities) and spatial context (via the neighbourhood functions). Since the
process is iterative, (8.15) is usually written as an explicit iteration formula:

pk+1
m (ωi) = pk

m(ωi)Q
k
m(ωi)∑

i

pk
m(ωi)Qk

m(ωi)
(8.16)

where k is the iteration counter. Depending on the size of the image and its spatial
complexity, the number of iterations required to stabilise the label probabilities may
be quite large. However, most change in the label probabilities occurs in the first
few iterations and there is good reason to believe that proceeding beyond say 5 to 10
iterations may not be necessary in most cases (see Sect. 8.8.4.4).

8.8.4.2
The Neighbourhood Function

Consider just one of the neighbours of pixel m in Fig. 8.8 – call it pixel n. Suppose
there is available a measure of compatibility of the current labelling of pixel m and
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its neighbouring pixel n. For example let rmn(ωi, ωj ) describe numerically how
compatible it is to have pixel m classified as ωi and neighbouring pixel n classified
as ωj . It would be expected, for example, that this measure will be high if the
adjoining pixels are both labelled wheat in an agricultural region, but low if one of
the neighbours was classified as snow. There are several ways these compatibility
coefficients, as they are called, can be defined. An intuitively appealing definition
is based on conditional probabilities. Thus, the compatibility measure pmn(ωi |ωj )

is the probability that ωi is the correct label for pixel m if ωj is the correct label
on pixel n. A small piece of evidence in favour of ωi being correct for pixel m

is pmn(ωi |ωj )pn(ωj ) – i.e. the probability that ωi is correct for pixel m if ωj is
correct for pixel n multiplied by the probability that ωj is correct for pixel n2. Since
probabilities for all possible labels on pixel n are available (even though some might
be very small) the total evidence from pixel n in favour of ωi being the correct
class for pixel m will be the sum of the contributions from all pixel n′s labelling
possibilities, viz.∑

j

pmn(ωi |ωj )pn(ωj ).

Consider now the full neighbourhood of the pixel m. In a like manner all the
neighbours contribute evidence in favour of labelling pixel m as coming from class ωi .
All these contributions are simply added3, via the use of neighbour weights dn that
recognise that some neighbours may be more influential than others (as for example,
pixels along a scan line in MSS data compared with those running down an image,
owing to the oversampling that occurs along rows – see Fig. A.2). Thus, at the kth
iteration, the total neighbourhood support for pixel m being classified as ωi is:

Qk
m(ωi) =

∑
n

dn

∑
j

pmn(ωi |ωj )p
k
n(ωj ) (8.17)

This is the definition of the neighbourhood function. In (8.16) and (8.17) it is common
to include pixel m in its own neighbourhood so that the modification process is not
entirely dominated by the neigbours, particularly if the number of iterations is so
large as to take the process quite a long way from its starting point.

Unless there is good reason to do otherwise the neighbour weights are generally
chosen all to be the same.

8.8.4.3
Determining the Compatibility Coefficients

Several methods are possible for determining values for the compatibility coefficients
pmn(ωi |ωj ). One is to have available a spatial model for the region under consider-
ation, derived from some other data source. In an agricultural region, for example,

2 This is the probability of the joint event that pixel m is labelled ωi and pixel n is labelled
ωj .

3 An alternative way of handling the full neighbourhood is to take the geometric mean of the
neighbourhood contributions.
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some general idea of field sizes along with a knowledge of the pixel size of the sensor
being used should make it possible to estimate how often one particular class occurs
following a given class on an adjacent pixel. Another approach is to compute values
for the compatibility coefficients from ground truth pixels, although the ground truth
needs to be in the form of training regions that contain heterogeneous and spatially
representative cover types.

8.8.4.4
The Final Step – Stopping the Process

While the relaxation process operates on label probabilities, the user is interested in
the actual labels themselves. At the completion of relaxation, or at any intervening
stage, each of the pixels can be classified according to the highest label probability.
Thought has to be given as to how and when the iterations should be terminated.
As suggested earlier, the process can be allowed to go to a natural completion at
which further iteration leads to no changes in the label probabilities for all pixels.
This however presents two difficulties. First, up to several hundred iterations may
be involved leading to a costly post classification step. Secondly, it is observed in
practice that the relaxation process improves the classification results in the first
few iterations, by the embedding of spatial information, often to deteriorate later in
the process (Richards, Landgrebe and Swain, 1981). Indeed, if the process is not
terminated, the thematic map, after a large number of iterations of relaxation, can be
worse than before the technique was applied.

To avoid these difficulties, a stopping rule or other controlling mechanism is
needed. As seen in the example of the following section, stopping after just a few
iterations may allow most of the benefit to be drawn from the process. Alternatively,
the labelling errors remaining at each iteration can be checked against ground truth,
if available, and the iterations terminated when the labelling error is seen to be
minimised (Gong and Howarth, 1989).

Another approach is to control the propagation of contextual information as it-
eration proceeds (Lee, 1984). A little thought will reveal that, in the first iteration,
only the immediate neighbours of a pixel have an influence on its labelling. In the
second iteration the neighbours two away will now have an influence via the inter-
mediary of the intervening pixels. Similarly, as iterations proceed, information from
neighbours further away is propagated into the pixel of interest to modify its label
probabilities. If the user has a view of the separation between neighbours at which
the spatial correlation has dropped to negligible levels, then the appropriate number
of iterations should be able to be identified at which to terminate the process without
unduly sacrificing any further improvement in labelling accuracy. Noting also that
the nearest neighbours should be most influential, with those further out being less
important, a useful variation is to reduce the values of the neighbour weights dn as
iteration proceeds so that after say 5 to 10 iterations they have been brought to zero.
Further iterations will then have no effect, and degradation in labelling accuracy
cannot occur (Lee and Richards, 1989).
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8.8.4.5
Examples

Figure 8.9 illustrates a simple application of relaxation labelling, in which a hy-
pothetical image of 100 pixels has been classified into just two classes – grey and
white. The ground truth for the region is shown, along with the thematic map (initial
labelling) assumed to have been generated from a point classifier such as the max-
imum likelihood rule. Also shown are the compatibility coefficients, expressed as
conditional probabilities, computed from the ground truth map. Label probabilities
were assumed to be 0.9 for the favoured label in the initial labelling and 0.1 for the
less likely label. The initial labelling, by comparison with the ground truth, can be
seen to have an accuracy of 82% (there are 12 pixels in error). The labelling (selected
on the basis of the largest current label probability) at significant stages during it-
eration is shown, illustrating the reduction in classification error resulting from the
incorporation of spatial information into the process. After 15 interations all initial
labelling errors have been removed, leading to a thematic map 100% in agreement
with the ground truth. In this case the relaxation process was allowed to proceed to
completion and there have been no ill effects. As pointed out in the previous section,
however, this is the exception and stopping rules may have to be applied in most
cases. Other simple examples where this is the case will be found in Richards et al.,
(1981).

Fig. 8.9. Simple demonstration of pixel relaxation labelling
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As a second example, the leftmost 82×100 pixels of the agricultural image shown
in Fig. 3.1 have been chosen. Figure 8.10a shows the ground truth for the image seg-
ment and Fig. 8.10b shows the result of a maximum likelihood classification. The
initial classification accuracy is 65.6%. The relaxation process was initialised using
actual probability estimates from the maximum likelihood rule. Conditional proba-
bilities as such were not used as compatibility coefficients. Instead, a slightly different
set of compatibilities as proposed by Peleg and Rosenfeld (1980) was adopted. Also,
to control the propagation of context information and thereby obviate any deleterious
effect of allowing the relaxation process to proceed unconstrained, the neighbour-
hood weights were diminished with iteration count as described in previous section.
Figure 8.10c shows the final labelling, which has an accuracy of 72.4%. Full details
of this example are available in Lee and Richards (1989).

8.8.5
Handling Spatial Context by Markov Random Fields

The effect of spatial context can also be incorporated into a classification using the
concept of the Markov Random Field (MRF). It is useful in developing the Markov
Random Field approach to commence by considering the whole image, rather than
just a local neighbourhood. We will restrict our attention to a neighbourhood once
we have established some fundamental concepts.

Suppose there is a total of M pixels in the image to be classified, with measure-
ment vectors x1, . . . xM . Alternatively, the measurement vectors can be expressed
{xm : m = 1, . . . M}, in which m ≡ (i, j) in our usual way of indexing the pixels in
an image. We can describe the full set of measurement vectors by X = {x1, . . . xM}.
Further, suppose the class labels on each of the M pixels can be represented by the set
Ω = {ωc1, . . . ωcM}; we could refer to that as the scene labelling, because it looks
at the classification of every pixel in the scene. Each ωcm can be one of c = 1, . . . C

available classes. By classification what we want to find, of course, is the scene la-
belling (or our best estimate) that matches the ground truth – i.e. the actual classes of
the pixels on the earth’s surface. Let the actual labels on the ground be represented
by Ω∗.

There will be a probability distribution p(Ω) associated with the labelling Ω of
the whole scene which describes the likelihood of finding that distribution of labels
over the image. Ω is sometimes referred to as a random field.

In principle, what we would like to do is find the scene labelling
∧
Ω – that is the

classification of all pixels – that maximises the global posterior probability p(Ω|X),
the probability that Ω is the correct overall scene labelling given that the full set of
measurement vectors for the scene is X. By using Bayes’ theorem we can express
this as

∧
Ω = arg max

Ω

{p(X|Ω)p(Ω)} (8.18)

in which the argmax function says that we choose the value of Ω that maximises its
argument. The distribution p(Ω) is the prior probability of the scene labelling.



8.8 Context Classification 217

a
b

c
F

ig
.8

.1
0.

a
G

ro
un

d
tr

ut
h

fo
r

th
e

le
ft

-h
an

d
si

de
of

th
e

im
ag

e
in

Fi
g.

3.
1.

T
he

sy
m

bo
ls

ar
e:

·=
re

d
so

il,
∗=

co
tto

n
cr

op
,0

=
ba

re
so

il
(l

ow
m

oi
st

ur
e)

,I
=

dr
y

ba
re

so
il,

+
=

ea
rl

y
ve

ge
ta

tio
n

gr
ow

th
,X

=
m

ix
ed

ba
re

so
il,

−
=

ba
re

so
il

(m
oi

st
or

pl
ou

gh
ed

).
b

R
es

ul
to

f
a

m
ax

im
um

lik
el

ih
oo

d
cl

as
si

fic
at

io
n

of
L

an
ds

at
M

SS
da

ta
.c

R
es

ul
to

f
ap

pl
yi

ng
re

la
xa

tio
n

la
be

lli
ng

to
th

e
re

su
lt

in
b,

in
co

rp
or

at
in

g
a

re
du

ct
io

n
in

th
e

ne
ig

hb
ou

r
w

ei
gh

ts
w

ith
ite

ra
tio

n



218 8 Supervised Classification Techniques

What we need to do now essentially is to perform the maximisation in (8.18),
recognising however that the pixels are contextually dependent ie. there is some
spatial correlation among them because adjacent pixels are likely to come from the
same class. To render the problem tractable we consider the posterior probability
just at the individual pixel level, so that our objective, for pixel m, is to find the
class c that maximises p(ωcm|xm, ω∂m) where ω∂m is the labelling on the pixels in
a neighbourhood about pixel m. A possible neighbourhood is that shown in Fig.8.8,
although often the immediately diagonal neighbours about m can also be included.
Now we note

p(ωcm|xm, ω∂m)=p(xm, ω∂m, ωcm)/p(xm, ω∂m)

=p(xm|ω∂m, ωcm)p(ω∂m, ωcm)/p(xm, ω∂m)

=p(xm|ω∂m, ωcm)p(ωcm|ω∂m)p(ω∂m)/p(xm, ω∂m)

The first term on the right hand side is similar to the class conditional distribu-
tion function, but conditional also on the neighbourhood labelling. It is reasonable
to assume that the class conditional density is independent of the neighbourhood
labelling so that p(xm|ω∂m, ωcm) = p(xm|ωcm). Note also that the measurement
vector xm and the neighbourhood labelling are independent of each other so that
p(xm, ω∂m) = p(xm)p(ω∂m), so that the last expression becomes

p(ωcm|xm, ω∂m)=p(xm|ωcm)p(ωcm|ω∂m)p(ω∂m)/p(xm)p(ω∂m)

=p(xm|ωcm)p(ωcm|ω∂m)/p(xm)

Since 1/p(xm) does not contribute to the decision concerning the correct label for
pixel m it can be removed from the last expression, leaving

p(ωcm|xm, ω∂m) ∝ p(xm|ωcm)p(ωcm|ω∂m) (8.19)

Now consider the probability p(ωcm|ω∂m). Essentially it is the probability that the
correct class for pixel m is c given the classes currently on the neighbours of pixel
m. In many ways it is analogous to the neighbourhood function for probabilistic
relaxation in (8.17). It is also a conditional prior probability – i.e. a prior probability
for the class on pixel m conditional on its neighbourhood. Because of this condition-
ality, the random fields of labels we are considering are now referred to as Markov
Random Fields (MRF).

The question is how do we now find a value for p(ωcm|ω∂m)? It is a property of
MRFs that we can express the conditional prior distribution in the form of a Gibbs
distribution

p(ωcm|ω∂m) = 1

Z
exp{−U(ωcm)} (8.20a)

in which (based on the so-called Ising model)

U(ωcm) =
∑
∂m

β[1 − δ(ωcm, ω∂m)] (8.20b)
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where δ(ωcm, ω∂m) is the Kroneker delta, which is unity if the arguments are equal
and zero otherwise; β > 0 is a parameter with value fixed by the user when applying
the MRF technique to control the influence of the neighbours.

Equation (8.20) is now substituted into (8.19) to generate a posterior probability
that depends on the class conditional probability found from the available spectral
measurements (the first term on the right hand side) and the effect of the spatial
neighbourhood. However, as with (8.4), it is convenient to take the logarithm of
(8.19) to yield (with the choice of Z = 1), an MRF-based discriminant function
for the class on pixel m assuming a multivariate normal class conditional density
function:

gcm(xm)=−1

2
ln |Σc| − 1

2
(xm − mc)Σ

−1
c (xm − mc)

t

−
∑
∂m

β[1 − δ(ωcm, ω∂m)] .

Recall that classification is carried out on the basis of finding the class for the pixel
that maximises the discriminant function. Noting the negative signs above, the most
appropriate class for pixel m can be found by minimising the expression

dcm(xm)= 1

2
ln |Σc| + 1

2
(xm − mc)Σ

−1
c (xm − mc)

t

+
∑
∂m

β[1 − δ(ωcm, ω∂m)] (8.21)

To use (8.21) there needs to be an allocation of classes over the scene before the last
term can be computed. Accordingly, an initial classification would be performed, say
with the maximum likelihood classifier of Sect. 8.2.3. Equation (8.21) would then be
used to modify the labels attached to the individual pixels to incorporate the effect
of context. However, in so doing some (or initially many) of the labels on the pixels
will be modified. The process should then be run again, and indeed as many times
presumably until there are no further changes.

8.9
Non-parametric Classification: Geometric Approaches

Statistical classification algorithms are the most commonly encountered labelling
techniques used in remote sensing and, for this reason, have been the principal meth-
ods treated in this chapter. One of the valuable aspects of a statistical approach is
that a set of relative likelihoods is produced. Even though, in the majority of cases,
the maximum of the likelihoods is chosen to indicate the most probable label for a
pixel, there remains nevertheless information in the remaining likelihoods that could
be made use of in some circumstances, either to initiate a process such as relaxation
labelling (Sect. 8.8.4) or simply to provide the user with some feeling for the other
likely classes. Those situations are however not common and, in most applications,
the maximum selection is made. That being so, the material in Sects. 8.2.4 and 8.3.4
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shows that the decision process has a geometric counterpart in that a comparison
of statistically derived discriminant functions leads equivalently to a decision rule
that allows a pixel to be classified on the basis of its position in multispectral space
compared with the location of a decision surface. This leads us to question whether
a geometric interpretation can be adopted in general, without needing first to use
statistical models.

8.9.1
Linear Discrimination

8.9.1.1
Concept of a Weight Vector

Consider the simple two class multispectral space shown in Fig. 8.11, which has
been constructed intentionally so that a simple straight line can be drawn between
the pixels as shown. This straight line, which will be a multidimensional linear surface
in general and which is called a hyperplane, can function as a decision surface for
classification. In the two dimensions shown, the equation of the line can be expressed

w1x1 + w2x2 + w3 = 0

where the xi are the brightness value co-ordinates of the multispectral space and the
wi are a set of coefficients, usually called weights. There will be as many weights as
the number of channels in the data, plus one. In general, if the number of channels
or bands is N , the equation of a linear surface is

w1x1 + w2x2 + . . . + wNxN + wN+1 = 0

which can be written as

wtx + wN+1 = 0 (8.22)

where x is the co-ordinate vector and w is called the weight vector. The transpose
operation has the effect of turning the column vector into a row vector so that the
product gives the correct expanded form of the previous equation.

Fig. 8.11. Two dimensional multispectral space, with two classes of pixel that can be separated
by a linear surface
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In a real exercise the position of the separating surface would be unknown initially.
Training a linear classifier amounts to determining an appropriate set of the weights
that places the decision surface between the two sets of training samples. There is not
necessarily a unique solution – any of an infinite number of (marginally different)
decision hyperplanes will suffice to separate the two classes.

For a given data set, an explicit equation for the separating surface can be obtained
using the minimum distance rule, as discussed in Sect. 8.3, which entails finding the
mean vectors of the two class distributions. An alternative method is outlined in
the following, based on selecting an arbitrary surface and then iterating it into an
acceptable position. Even though not often used anymore, this method is useful to
consider since it establishes some of the concepts used in neural networks and support
vector machines (see Sect. 8.9.2).

8.9.1.2
Testing Class Membership

The calculation in (8.22) will be exactly zero only for values of x lying on the
decision surface. If we substitute into that equation values of x corresponding to the
pixel points indicated in Fig. 8.11 the left hand side will be non-zero. For pixels in
one class a positive result will be given, while pixels on the other side will give a
negative result. Thus, once the decision surface has been identified (i.e. trained), then
a decision rule is

x ∈ class 1 if wtx + wN+1 > 0
x ∈ class 2 if wtx + wN+1 < 0

(8.23)

8.9.1.3
Training

A full discussion of linear classifier training is given in Nilsson (1965, 1990); only
those aspects helpful to the neural network development following are treated here.

It is expedient to define a new, augmented pixel vector according to

y = [xt , 1]t
If, in (8.22), we also take the term wN+1 into the definition of the weight vector, viz.

w = [wt , wN+1]t
then the equation of the decision surface, can be expressed more compactly as

wty = 0 (or equivalently w · y = 0)

so that the decision rule of (8.23) can be restated

x ∈ class 1 if wty > 0
x ∈ class 2 if wty < 0

(8.24)

We usually think of wty = 0 as defining a linear surface in the x (or now y)
multispectral space, in which the coefficients of the variables (yl, y2, etc.) are the
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Fig. 8.12. Representation of pixels as hyper-
planes and weight vectors as points in so-called
weight space.The arrows indicate the side of each
pixel plane on which the weight point must lie for
correct classification

Fig. 8.13. Modification of the weight point
to give the correct response

weights w1, w2, etc. However it is also possible to think of the equation as describing
a linear surface in which the y’s are the coefficients and the w’s are the variables. This
interpretation will see these surfaces plotted in a co-ordinate system which has axes
w1, w2, etc. A two-dimensional version of this weight space, as it is called, is shown
in Fig. 8.12, in which have been plotted a number of pattern hyperplanes; these are
specific linear surfaces in the new co-ordinates that pass through the origin and have,
as their coefficients, the components of the (augmented) pixel vectors. Thus, while
the pixels plot as points in multispectral space, they plot as linear surfaces in weight
space. Likewise, a set of weight coefficients will define a surface in multispectral
space, but will plot as a point in weight space. Although this is an abstract concept
it will serve to facilitate an understanding of how a linear classifier can be trained.

In weight space the decision rule of (8.24) still applies – however now it tests that
the weight point is on the appropriate side of the pattern hyperplane. For example,
Fig. 8.12 shows a single weight point which lies on the correct side of each pixel and
thus defines a suitable decision surface in multispectral space. In the diagram, small
arrows are attached to each pixel hyperplane to indicate the side on which the weight
point must lie in order that the test of (8.24) succeeds for all pixels. The purpose of
training the linear classifier is to ensure that the weight point is located somewhere
within the solution region. If, through some initial guess, the weight point is located
somewhere else in weight space then it has to be moved to the solution region.

Suppose an initial guess is made for the weight vector w, but that this places
the weight point on the wrong side of a particular pixel hyperplane as illustrated
in Fig. 8.13. Clearly, the weight point has to be shifted to the other side to give a
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correct response in (8.24). The most direct manner in which the weight point can be
modified is to move it straight across the pixel hyperplane. This can be achieved by
adding a scaled amount of the pixel vector to the weight vector4. The new position
of the weight point is then

w′ = w + cy (8.25)

where c is called the correction increment, the size of which determines by how
much the original weight point is moved orthogonal to the pixel hyperplane. If it is
large enough the weight point will be shifted right across the pixel plane, as required.
Having so modified the weight vector, the product in (8.24) then becomes

w′ty = wty + cyty

= wty + c|y|2
Clearly, if the initial wty was erroneously negative a suitable positive value of c

will give a positive value of w′ty; otherwise a negative value of c will correct an
erroneous initial positive value of the product.

Using the class membership test in (8.24) and the correction formula of (8.25) the
following iterative nonparametric training procedure, referred to as error correction
feedback, is adopted.

First, an initial position for the weight point is chosen arbitrarily. Then, pixel vec-
tors from training sets are presented one at a time. If the current weight point position
classifies a pixel correctly then no action need be taken; otherwise the weight vector
is modified as in (8.25) with respect to that particular pixel vector. This procedure is
repeated for each pixel in the training set, and the set is scanned as many times as
necessary to move the weight point into the solution region. If the classes are linearly
separable then such a solution will be found.

8.9.1.4
Setting the Correction Increment

Several approaches can be adopted for choosing the value of the correction increment,
c. The simplest is to set c equal to a positive or negative constant (according to the
change required in the wty product). A common choice is to make c = ±1 so that
application of (8.25) amounts simply to adding the augmented pixel vector to or
subtracting it from the weight vector, thereby obviating multiplications and giving
fast training.

Another rule is to choose the correction increment proportional to the difference
between the desired and actual response of the classifier:

c = η(t − wty)

4 The hyperplane in w coordinates is given by wty = 0; a vector normal to that hyperplane
is the vector of the coefficients of w. This can be checked for a simple two dimensional
example. A line through the origin with unity slope is −w1 + w2 = 0. A vector normal to
the line joins the origin to (−1, 1), i.e. y = [−1, 1]t .
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so that (8.25) can be written

w′ = w + �w

with

�w = η(t − wty)y (8.26)

where t is the desired response to the training pattern y and wty is the actual response;
η is a factor which controls the degree of correction applied. Usually t would be
chosen as +1 for one class and −1 for the other.

8.9.1.5
Classification – The Threshold Logic Unit

After the linear, two category classifier has been trained, so that the final version of
the weight vector w is available, it is ready to be presented with pixels it has not seen
before in order to attach ground cover class labels to those pixels. This is achieved
through application of the decision rule in (8.24). It is useful, in anticipation of
neural networks, to picture the classification rule in diagrammatic form as depicted
in Fig. 8.14a. Simply, this consists of weighting elements, a summing device and
an output element which, in this case, performs the maximum selection. Together
these are referred to as a threshold logic unit (TLU). It bears substantial similarity
to the concept of a processing element used in neural networks for which the output
thresholding unit is replaced by a more general function and the pathway for the
unity input in the augmented pattern vector is actually incorporated into the output
function. The latter can be done for a simple TLU as shown in Fig. 8.14b, in which the
simple thresholding element has been replaced by a functional block which performs

Fig. 8.14. a Diagrammatic representation of (8.24). b More useful representation of a pro-
cessing element in which the thresholding function is generalised
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the addition of the final weighting coefficient to the weighted sum of the input pixel
components, and then performs a thresholding (or more general nonlinear) operation.

8.9.1.6
Multicategory Classification

The foregoing work on linear classification has been based on an approach that can
perform separation of pixel vectors into just two categories. Were it to be considered
for remote sensing, it needs to be extended to be able to cope with a multiclass
problem.

Multicategory classification can be carried out in one of two ways. First a decision
tree of linear classifiers (TLUs) can be constructed, as seen in Fig. 8.15, at each
decision node of which a decision of the type (water or not water) is made. At a
subsequent node the (not water) category might be differentiated as (soil or not
soil) etc. It should be noted that the decision process at each node has to be trained
separately.

Alternatively, a multicategory version of the simple binary linear classifier can
be derived. This reverts, for its derivation, to the concept of a discriminant function
and, specifically, defines the linear classifier discriminant function for class i as

gi(x) = wt
iy i = 1, . . . M

Class membership is then decided on the basis of the usual decision rule expressed
in (8.11a), i.e. according to the largest of the gi(x) for the given pixel vector x. For
training, an initial arbitrary set of weight vectors and thus discriminant functions is
chosen. Then each of the training pixels is checked in turn. Suppose, for a particular
pixel the j th discriminant function is erroneously largest, when in fact the pixel
belongs the ith category. A correction is carried out by adjusting the weight vectors
for these two discriminant functions, to increase that for the correct class for the pixel
and to decrease that for the incorrect class, according to

Fig. 8.15. Binary decision tree of TLUs used for multicategory classification
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w′
i = wi + cy

w′
j = wj − cy

(8.27)

where c is the correction increment. Again this correction procedure is iterated over
the training set of pixels as many times as necessary to obtain a solution. Nilsson
(1965, 1990) shows that a solution is possible by this approach.

8.9.2
Support Vector Classifiers

8.9.2.1
Linearly Separable Data

The training process outlined in Sect. 8.9.1.3 can lead to many, non-unique, yet
acceptable solutions for the weight vector. The actual size of the solution region
depicted in Fig. 8.12 is an indication of that. Also, every training pixel takes part in
the training process; yet examination of Fig. 8.11 suggests that it is only those pixels
in the vicinity of the separating hyperplane that define where the hyperplane needs
to lie in order to give a reliable classification.

The support vector machine (SVM) provides a training approach that depends
only on those pixels in the vicinity of the separating hyperplane (called the support
pixel vectors). It also leads to a hyperplane position that is in a sense optimal for the
available training patterns, as will be seen shortly.

The support vector concept was introduced to remote sensing image classification
by Gualtieri and Cromp (1998). Two recent reviews that contain more detail than
is given in the following treatment are by Burges (1998) and Huang et al. (2002).
A very good recent treatment from a remote sensing perspective has been given by
Melgani and Bruzzone (2004).

If we expand the region in the vicinity of the hyperplane in Fig. 8.11 we can see,
as suggested in Fig. 8.16, that the optimal orientation of the hyperplane is when there
is a maximum separation between the patterns in the two classes. We can then draw
two further hyperplanes parallel to the separating hyperplane, as shown, bordering
the nearest training pixels from the two classes. The equations for the hyperplanes
are shown in the figure. Note that the choice of unity on the right hand side of the
equations for the two marginal hyperplanes is arbitrary, but it helps in the analysis. If
it were otherwise it could be scaled to unity by appropriately scaling the weighting
coefficients wk . Note that for pixels that lie beyond the marginal hyperplanes, we
have

for class 1 pixels w.x + wN+1 ≥ 1 (8.28a)

for class 2 pixels w.x + wN+1 ≤ −1 (8.28b)

It is useful now to describe the class label of the ith pixel by the variable yi , which
takes the value +1 for class 1 and −1 for class 2 pixels. Equations (8.28a) and (8.28b)
can then be written as a single expression valid for pixels from both classes:

(w.x + wN+1)yi ≥ 1 for pixel i in its correct class.
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x1

x2 w.x + wN+1 = 1

w.x + wN+1 = -1

margin

optimal
hyperplane

Class 1 
Class 2 

Fig. 8.16. Expanded version of Fig. 8.11 showing that an optimal separating hyperplane
orientation exists determined by finding the maximum separation between the training pixels.
Under that condition two marginal hyperplanes can be constructed using only those pixels
vectors closest to the separating surface

Alternatively

w.x + wN+1)yi − 1 ≥ 0 (8.29)

Equation (8.29) must hold for all pixels if the data is linearly separated by the
two marginal hyperplanes of Fig 8.16. Those hyperplanes, defined by the equalities
in (8.28), are described by

w.x + wN+1 − 1 = 0

w.x + wN+1 + 1 = 0

The perpendicular distances of these hyperplanes from the origin, respectively, are
−(wN+1 − 1)/||w|| and −(wN+1 + 1)/||w||, where ‖w‖ is the Euclidean length of
the weight vector. Therefore, the distance between the two hyperplanes, which is the
margin in Fig. 8.16, is 2/‖w‖.

The best position (orientation) for the separating hyperplane will be that for which
2/‖w‖ is a maximum, or equivalently when the magnitude of the weight vector, ‖w‖,
is a minimum. However there is a constraint! As we seek to maximise the margin
between the two marginal hyperplanes by minimising ‖w‖ we must not allow (8.29)
to be invalidated. In other words, all the training pixels must be on their correct side
of the marginal hyperplanes. We handle the process of minimising ‖w‖ subject to
that constraint by the process known as Lagrange multipliers. This requires us to set
up a function (called the Lagrangrian) which includes the expression to be minimised
(‖w‖) from which is subtracted a proportion (αi) of each constraint (one for each
training pixel) in the following manner:
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L = 1

2
‖w‖2 −

∑
i

αi{yi(w.xi + wN+1) − 1} (8.30)

The α¡ are called Lagrange multipliers and are positive by definition, i.e.

α¡ ≥ 0 for all i.

By minimising L we minimise ‖w‖ subject to the constraint (8.29).
In (8.30) it is convenient to substitute

f (x¡) = (w.x¡ + wN+1)y¡ − 1

to give

L = 1

2
‖w‖2 −

∑
i

αif (xi)

noting that for pixels in their correct class f (x¡) ≥ 0.
It is useful here to remember what our task is. We have to find the most separated

marginal hyperplanes in Fig. 8.16. In other words we need to find the w and wN+1
that minimises L and thus maximises the margin shown in the figure.

But in seeking to minimise L (essentially during the training process) how do
we treat the α¡? Suppose (8.29) is violated, as could happen for some pixels during
training; then f (x¡) will be negative. Noting that α¡ is positive that would cause L

to increase. But we need to find values for w and wN+1 such that L is minimised.
The worst possible case to handle is when the α¡ are such as to cause L to be a
maximum, since that forces us to minimise L with respect to w and wN+1 while the
α¡ are trying to make it as large as possible. The most robust approach to finding w

and wN+1 (and thus the hyperplanes) therefore is to find the values of w and wN+1
that minimise L while simultaneously finding the α¡ that try to maximise it.

Thus we require, first, that:

∂L

∂w
= w −

∑
i

αiyixi = 0

so that w =
∑

i

αiyixi . (8.31a)

Secondly we require:

∂L

∂wN+1
= −

∑
i

αiyi = 0

so that
∑

i

αiyi = 0 . (8.31b)

Before proceeding, examine (8.30) again, this time for training pixels that satisfy
the requirement of (8.29). What value(s) of α¡ in (8.30) for those pixels maximise
L? Since y¡(w.x¡ + wN+1) – 1 is now always positive then the only (non-negative)
value of α¡ that makes L as big as possible is α¡ = 0. Therefore, for any training
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pixels on the correct side of the marginal hyperplanes, α¡ = 0. This is an amazing,
yet intuitive, result. It says we do not have to use any of the training pixel vectors,
other than those that reside exactly on one of the marginal hyperplanes. The latter
are called support vectors since they are the only ones that support the process of
finding the marginal hyperplanes. Thus, in applying (8.31a) to find w we only have
to use those pixels on the marginal hyperplanes.

But the training is not yet finished! We still have to find the relevant α¡ (i.e. those
that maximise L and are non-zero).

To proceed, note that we can put ‖w‖ = w.w in (8.30). Now (8.30), along with
(8.31a), can be written most generally as:

L= 1

2

(∑
i

αiyixi

)
·
⎛
⎝∑

j

αj yjxj

⎞
⎠

−
∑

i

αi

⎡
⎣yi

⎛
⎝
⎛
⎝∑

j

αj yjxj

⎞
⎠ .xi + wN+1

⎞
⎠− 1

⎤
⎦

= 1

2

∑
i,j

αiαj yiyjxi .xj −
∑
i,j

αiαj yiyjxi .xj − wN+1

∑
i

αiyi +
∑

i

αi

Using (8.31b) this simplifies to

L =
∑

i

αi − 1

2

∑
i,j

αiαj yiyjxi .xj (8.32)

which has to be maximised by the choice of α¡. This usually requires a numerical
procedure to solve for any real problem. Once we have found the α¡ – call them α◦

¡ –
we can substitute them into (8.31a) to give the optimal training vector:

wo =
∑

i

αo
i yixi (8.33a)

But we still do not have a value for wN+1. Recall that on a marginal hyperplane

(w.xi + wN+1)yi − 1 = 0 .

Choose two support (training) vectors x(1) and x(−1) on each of the two marginal
hyperplanes respectively for which y = 1 and −1. For these vectors we have

w.x(1) + wN+1 − 1 = 0

and

−w.x(−1) − wN+1 − 1 = 0

so that

wN+1 = 1

2
(w.x(1) + w.x(−1)) . (8.33b)

Normally sets of x(1), x(−1), would be used, with wN+1 found by averaging.



230 8 Supervised Classification Techniques

With the values of α◦
¡ determined by numerical optimisation, (8.33a,b) now give

the parameters of the separating hyperplane that provides the largest margin be-
tween the two sets of training data. In terms of the training data, the equation of the
hyperplane is:

w◦.x + wN+1 = 0

so that the discriminant function, for an unknown pixel x is

g(x) = sgn (w◦.x + wN+1) (8.34)

8.9.2.2
Linear Inseparability – The Use of Kernel Functions

If the pixel space is not linearly separable then the development of the previous
section will not work without modification. A transformation of the pixel vector x to
a different (usually higher order) feature space can be applied that renders the data
linearly separable allowing the earlier material to be applied.

The two significant equations for the linear support vector approach of the preced-
ing section are (8.32) (for finding α◦

¡ ) and (8.34) (the resulting discriminant function).
By using (8.33a), (8.34) can be rewritten

g(x) = sgn
{∑

α◦
i yixi .x + wN+1

}
(8.35)

Now introduce the feature space transformation x → Φ(x) so that (8.32) and (8.35)
become

L =
∑

i

αi − 0.5
∑
i,j

αiαj yiyjΦ (xi ) .Φ
(
xj

)
(8.36a)

g(x) = sgn
{∑

α◦
i yiΦ(xi ).Φ(x) + wN+1

}
(8.36b)

In both (8.32) and (8.35) the pixel vectors occur only in the dot products. As a result
the Φ(x) also appear only in dot products. So to use (8.36) it is strictly not necessary
to know Φ(x) but only a scalar quantity equivalent to Φ(xi ).Φ(xj ).

We call the product Φ(xi ).Φ(xj ) a kernel, and represent it by k(xi , xj ) so that
(8.36) becomes

L =
∑

i

αi − 0.5
∑
i,j

αiαj yiyj k
(
xi .xj

)

g(x) = sgn
{∑

α◦
i yik(xi , x) + wN+1

}
Provided we know the form of the kernel we never actually need to know the under-
lying transformation Φ(x)! Thus, after choosing k(xi , xj ) we then find the α◦

i that
maximise L and use that value in g(x) to perform a classification.
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Two commonly used kernels in remote sensing are:

The polynomial kernel k(xi , xj ) = [(xi ).(xj ) + 1]p
The radial basis function kernel k(xi , xj ) = e−γ‖xi−xj‖2

in which p and γ are constants to be chosen.

8.9.2.3
Multicategory Classification

As in Sect. 8.9.1.6, the binary classifiers developed above can be used to perform
multicategory classification by embedding them in a binary decision tree.

8.9.3
Networks of Classifiers – Solutions of Nonlinear Problems

The decision tree structure shown in Fig. 8.15 is a classifier network in that a collection
of simple classifiers (in that case TLUs) is brought together to solve a complex
problem. Nilsson (1965, 1990) has proposed a general network structure under the
name of layered classifiers consisting entirely of interconnected TLUs, as shown
in Fig. 8.17. The benefit of forming a classifier network is that data sets that are
inherently not separable with a simple linear decision surface should, in principle, be
able to be handled since the layered classifier is known to be capable of implementing
nonlinear surfaces. The drawback however, is that training procedures for layered
classifiers, consisting of TLUs, are difficult to determine.

One specific manifestation of a layered classifier, known as a committee machine,
is depicted in Fig. 8.18. Here the first layer consists simply of a set of TLUs, to

Fig. 8.17. Layered TLU classi-
fier

Fig. 8.18. Committee classifier
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each of which a pixel vector under test is submitted to see which of two classes is
recommended. The second layer is a single element which has the responsibility of
judging the recommendations of each of the nodes in the first layer. It is therefore of
the nature of a chairman or vote taker. It can make its decision on the basis of several
sets of logic. First, it can decide class membership on the basis of the majority vote
of the first layer recommendations. Secondly, it can decide on the basis of veto, in
which all first layer classifiers have to agree before the vote taker will recommend
a class. Thirdly, it could use a form of seniority logic in which the chairman rank
orders the decisions of the first layer nodes. It always refers to one first. If that
node has a solution then the vote taker accepts it and goes no further. Otherwise
it consults the next most senior of the first layer nodes, etc. A committee classifier
based on seniority logic has been developed for remote sensing applications by Lee
and Richards (1985).

8.9.4
The Neural Network Approach

For the purposes of this treatment a neural network is taken to be of the nature of a
layered classifier such as depicted in Fig. 8.17, but with the very important difference
that the nodes are not TLUs, although resembling them closely. The node structure
in Fig. 8.14b can be made much more powerful, and coincidentally lead to a training
theorem for multicategory nonlinear classification, if the output processing element
does not apply a thresholding operation to the weighted input but rather applies a
softer, and mathematically differentiable, operation.

8.9.4.1
The Processing Element

The essential processing node in the neural network to be considered here (sometimes
called a neuron by analogy to biological data processing from which the term neural
network derives) is an element as shown in Fig. 8.14b with many inputs and with a
single output, depicted simply in Fig. 8.19a. Its operation is described by

o = f (wtx + θ) (8.37)

where θ is a threshold (sometimes set to zero), w is a vector of weighting coefficients
and x is the vector of inputs. For the special case when the inputs are the band values
of a particular multispectral pixel vector it could be envisaged that the threshold θ

takes the place of the weighting coefficient wN+1 in (8.22). If the function f is a
thresholding operation this processing element would behave as a TLU. In general,
the number of inputs to a node will be defined by network topology as well as data
dimensionality, as will become evident.

The major difference between the layered classifier of TLUs shown in Fig. 8.17
and the neural network, known as the multilayer perceptron, is in the choice of the
function f , called the activation function. Its specification is simply that it emulate
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Fig. 8.19. a Neural network processing element. b Plots of (8.38) for various θ0

thresholding in a soft or asymptotic sense and be differentiable. The most commonly
encountered expression is

f (z) = 1

1 + e−z/θ0
(8.38)

where the argument z is wtx+θ as seen in (8.37) and θ0 is a constant. This approaches
1 for z large and positive and 0 for z large and negative and is thus asymptotically
thresholding. It is important to recognise that the outcome of the product wtx is a
simple scalar; when plotted with θ = 0, (8.38) appears as shown in Fig. 8.19b. For
θ0 very small the activation function approaches a thresholding operation. Usually
θ0 = 1.

A neural network for use in remote sensing image analysis will appear as shown
in Fig. 8.20, being a layered classifier composed of processing elements of the type
shown in Fig. 8.19a. It is conventionally drawn with an input layer of nodes (which
has the function of distributing the inputs to the processing elements of the next layer,
and scaling them if necessary) and an output layer from which the class labelling
information is provided. In between there may be one or more so-called hidden or
other processing layers of nodes. Usually one hidden layer will be sufficient, although
the number of nodes to use in the hidden layer is often not readily determined. We
return to this issue in Sect. 8.9.4.3 below.
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Fig. 8.20. A multilayer perceptron neural network, and the nomenclature used in the derivation
of the backpropagation training algorithm

8.9.4.2
Training the Neural Network – Backpropagation

Before it can perform a classification, the network of Fig. 8.20 must be trained. This
amounts to using labelled training data to help determine the weight vector w and the
threshold θ in (8.37) for each processing element connected into the network. Note
that the constant θ0 in (8.38), which governs the gradient of the activation function
as seen in Fig. 8.19b, is generally pre-specified and does not need to be estimated
from the training data.

Part of the complexity in understanding the training process for a neural net
is caused by the need to keep careful track of the parameters and variables over
all layers and processing elements, how they vary with the presentation of training
pixels and (as it turns out) with iteration count. This can be achieved with a detailed
subscript convention, or by the use of a simpler generalised notation. We will adopt
the latter approach, following essentially the development given by Pao (1989).
The derivation will be focussed on a 3 layer neural net, since this architecture has
been found sufficient for many applications. However the results generalise to more
layers.

Figure 8.20 incorporates the nomenclature used. The three layers are lettered as
i, j , k with k being the output. The set of weights linking layer i PEs with those
in layer j are represented generally by wji , while those linking layers j and k are
represented by wkj . There will be a very large number of these weights, but in deriving
the training algorithm it is not necessary to refer to them all individually. Similarly
the general activation function arguments zi and outputs oi , can be used to represent
all the arguments and outputs in the corresponding layer.
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For j and k layer PEs (8.37) is

oj = f (zj ) with zj =
∑
j

wjioi + θj (8.39a)

ok = f (zk) with zk =
∑

k

wkj oj + θk (8.39b)

The sums in (8.39) are shown with respect to the indices j and k. This should be
read as meaning the sums are taken over all inputs of particular layer j and layer k

PEs respectively. Note also that the sums are expressed in terms of the outputs of the
previous layer since these outputs form the inputs to the PEs in question.

An untrained or poorly trained network will give erroneous outputs. Therefore,
as a measure of how well a network is functioning during training, we can assess the
outputs at the last layer (k). A suitable measure along these lines is to use the sum
of the squared output error. The error made by the network when presented with a
single training pixel can thus be expressed

E = 1

2

∑
k

(tk − ok)
2 (8.40)

where the tk represent the desired or target outputs5 and ok represents the actual
outputs from the output layer PEs in response to the training pixel. The factor of 1

2

is included for arithmetic convenience in the following. The sum is over all output
layer PEs.

A useful training strategy is to adjust the weights in the processing elements
until the error has been minimised, at which stage the actual outputs are as close as
possible to the desired outputs.

A common approach for adjusting weights to reduce (and thus minimise) the value
of a function of which they are arguments, is to modify their values proportional to
the negative of the partial derivative of the function. This is called a gradient descent
technique6. Thus for the weights linking the j and k layers let

w′
kj = wkj + �wkj

with

�wkj = −η
∂E

∂wkj

where η is a positive constant that controls the amount of adjustment. This requires
an expression for the partial derivative, which can be determined using the chain rule

5 These will be specified from the training data labelling. The actual value taken by tk however
will depend on how the outputs themselves are used to represent classes. Each output could
be a specific class indicator (e.g. 1 for class 1 and 0 class 2); alternatively some more
complex coding of the outputs could be adopted. This is considered in Sect. 8.9.4.3.

6 Another optimisation procedure used successfully for neural network training in remote
sensing is the conjugate gradient method (Benediktsson et al., 1993).
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∂E

∂wkj

= ∂E

∂ok

∂ok

∂zk

∂zk

∂wkj

(8.41)

each term of which must now be evaluated.
From (8.39b) and (8.38) we see (for θ0 = 1)

∂ok

∂zk

= f ′(zk) = (1 − ok)ok (8.42a)

and
∂zk

∂wkj

= oj (8.42b)

Now from (8.40)

∂E

∂ok

= −(tk − ok) (8.42c)

Thus the correction to be applied to the weights is

�wkj = η(tk − ok)(1 − ok)okoj (8.43)

For a given trial, all of the terms in this expression are known so that a beneficial
adjustments can be made to the weights which link the hidden layer to the output
layer.

Now consider the weights that link the i and j layers. The weight adjustments are

�wji = −η
∂E

∂wji

= −η
∂E

∂oj

∂oj

∂zj

∂zj

∂wji

In a similar manner to the above development we have

�wji = −η
∂E

∂oj

(1 − oj )oj oi

Unlike the case with the output layer, however, we cannot obtain an expression for
the remaining partial derivative from the error formula, since the oj are not the
outputs at the final layer, but rather those from the hidden layer. Instead we express
the derivative in terms of a chain rule involving the output PEs. Specifically

∂E

∂oj

=
∑

k

∂E

∂zk

∂zk

∂oj

=
∑

k

∂E

∂zk

wkj

The remaining partial derivative can be obtained from (8.42a) and (8.42c) as

∂E

∂zk

= −(tk − ok)(1 − ok)ok

so that

�wji = η(1 − oj )oj oi

∑
k

(tk − ok)(1 − ok)okwkj (8.44)
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Having determined the wkj from (8.43), it is now possible to find values for the wji

since all other entries in (8.44) are known or can be calculated readily.
For convenience we now define

δk = (tk − ok)(1 − ok)ok (8.45a)

and
δj = (1 − oj )oj

∑
k

(tk − ok)(1 − ok)okwkj

= (1 − oj )oj

∑
k

δkwkj (8.45b)

so that we have

�wkj = ηδkoj (8.46a)

and

�wji = ηδjoi (8.46b)

both of which should be compared with (8.26) to see the effect of a differentiable
activation function.

The thresholds θj and θk in (8.39) are found in exactly the same manner as for
the weights in that (8.46) is used, but with the corresponding inputs chosen to be
unity.

Now that we have the mathematics in place it is possible to describe how training
is carried out. The network is initialised with an arbitrary set of weights in order that
it can function to provide an output. The training pixels are then presented one at a
time to the network. For a given pixel the output of the network is computed using
the network equations. Almost certainly the output will be incorrect to start with –
i.e. the ok will not match the desired class tk for the pixel, as specified by its labelling
in the training data. Correction to the output PE weights, described in (8.46a), is then
carried out, using the definition of δk in (8.45a). With these new values of δk and thus
wkj (8.45b) and (8.46b) can be applied to find the new weight values in the earlier
layers. In this way the effect of the output being in error is propagated back through
the network in order to correct the weights. The technique is thus often referred to
as back propagation.

Pao (1989) recommends that the weights not be corrected on each presentation
of a single training pixel, but rather that the corrections for all pixels in the training
set be aggregated into a single adjustment. Thus for p training patterns the bulk
adjustments are7

�w′
kj =

∑
p

�wkj and �w′
ji =

∑
k

�wji

7 This is tantamount to deriving the algorithm with the error being calculated over all pixels
p in the training set, viz Ep = ∑

p
E, where E is the error expressed for a single pixel in

(8.40).
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After the weights have been so adjusted the training pixels are presented to the
network again and the outputs re-calculated to see if they correspond better to the
desired classes. Usually they will still be in error and the process of weight adjustment
is repeated. Indeed the process is iterated as many times as necessary in order that
the network respond with the correct class for each of the training pixels or until the
number of errors in classifying the training pixels is reduced to an acceptable level.

8.9.4.3
Choosing the Network Parameters

When considering the use of the neural network approach to classification it is nec-
essary to make several key decisions beforehand. First, the number of layers to use
must be chosen. Generally, a three layer network is sufficient, with the purpose of the
first layer being simply to distribute (or fan out) the components of the input pixel
vector to each of the processing elements in the second layer. Thus the first layer
does no processing as such, apart perhaps from scaling the input data, if required.

The next choice relates to the number of elements in each layer. The input layer
will generally be given as many nodes as there are components (features) in the
pixel vectors. The number to use in the output node will depend on how the outputs
are used to represent the classes. The simplest method is to let each separate output
signify a different class, in which case the number of output processing elements
will be the same as the number of training classes. Alternatively, a single PE could
be used to represent all classes, in which case a different value or level of the output
variable will be attributed to each class. A further possibility is to use the outputs as
a binary code, so that two output PEs can represent four classes, three can represent
8 classes and so on.

As a general guide the number of PEs to choose for the hidden or processing
layers should be the same as or larger than the number of nodes in the input layer
(Lippmann, 1987).

8.9.4.4
Examples

It is instructive to consider a simple example to see how a neural network is able to
develop the solution to a classification problem. Figure 8.21 shows two classes of
data, with three points in each, arranged so that they cannot be separated linearly. The
network shown in Fig. 8.22 will be used to discriminate the data. The two PEs in the
first processing layer are described by activation functions with no thresholds – i.e.
θ = 0 in (8.37), while the single output PE has a non-zero threshold in its activation
function.

Table 8.3 shows the results of training the network with the backpropagation
method of the previous sections, along with the error measure of (8.40) at each
step. It can be seen that the network approaches a solution quickly (approximately
50 iterations) but takes more iterations (approximately 250) to converge to a final
result.



8.9 Non-parametric Classification: Geometric Approaches 239

Fig. 8.21. Two-class data set, which is
not linearly separable

Fig. 8.22. Two processing
layer neural network to
be applied to the data of
Fig. 8.21

Having trained the network it is now possible to understand how it implements a
solution to the nonlinear pattern recognition problem. The arguments of the activation
functions of the PEs in the first processing layer each define a straight line (hyperplane
in general) in the pattern space. Using the result at 250 iterations, these are:

2.901x1 − 2.976x2 = 0
2.902x1 + 2.977x2 = 0

which are shown plotted in Fig. 8.23. An individual line goes some way towards
separating the data but cannot accomplish the task fully. It is now important to
consider how the output PE operates on the outputs of the first layer PEs to complete
the discrimination of the two classes. For pattern points lying exactly on one of the
above lines, the output of the respective PE will be 0.5, given that the activation
function of (8.38) has been used. However, for patterns a little distance away from
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Table 8.3. Training the network of Fig. 8.22

* arbitrary initial set of weights and θ

Table 8.4. Response of the output layer PE

Fig. 8.23. Neural network solution for the data of Fig. 8.21
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Fig. 8.24. Illustration of how the first process-
ing layer PEs transform the input data into a
linearly separable set, which is then discrimi-
nated by the output layer hyperplane

those lines the output of the first layer PEs will be close to 0 or 1 depending on
which side of the hyperplane they lie. We can therefore regard the pattern space as
being divided into two regions – 0 and 1 – by a particular hyperplane. Using these
extreme values, Table 8.4 shows the possible responses of the output layer PE for
patterns lying somewhere in the pattern space. As seen, for this example the output
PE functions in the nature of a logical OR operation; patterns that lie on the 1 side
of EITHER input PE hyperplane are labelled as belonging to one class, while those
that lie on the 0 side of both hyperplanes will be labelled as belonging to the other
class. Thus patterns which lie in the shaded region shown in Fig. 8.23 will generate a
0 at the output of the network and thus will be labelled as belonging to class 1, while
patterns in the unshaded regions will generate a 1 response and thus will be labelled
as belonging to class 2. Although this exercise is based only on two classes of data,
similar functionality of the various PEs in a network can, in principle, be identified.
The input PEs will always set up hyperplane divisions of the data and the later PEs
will operate on the results of those simple discriminations.

An alternative way of considering how the network determines a solution is to
regard the first processing layer PEs as transforming the data in such a way that
later PEs (in this example only one) can exercise linear discrimination. Figure 8.24
shows a plot of the outputs of the first layer PEs when fed with the training data
of Fig. 8.21. As observed, after transformation, the data is linearly separable. The
hyperplane shown is that generated by the argument of the activation function of the
output layer PE.

To illustrate how the network of Fig. 8.22 functions on unseen (i.e. testing set)
data, Table 8.5 shows its response to the testing patterns indicated in Fig. 8.25. The
class decision for a pattern is made by rounding the output PE response to 0 or 1 as
appropriate. As noted, for this simple example, all patterns are correctly classified.

Benediktsson, Swain and Esroy (1990) have demonstrated the application of a
neural network approach to classification in remote sensing, obtaining classification
accuracies as high as 95% on training data although only as high as 52% when the
network was applied to a test data set. It is suggested that the training data may not
have been fully representative of the image. This is an important issue with neural
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Fig. 8.25. Location of test data, indi-
cated by the lettered crosses

Table 8.5. Performance of the network on the test data

nets, more so than with statistical classification methods such as maximum likeli-
hood, since the parameters in the statistical approach are estimates of statistics, and
are not strongly affected by outlying training samples. The work of Benediktsson also
illustrates, to an extent, the dependence of performance on the network architecture
chosen.

Hepner (1990) has also used a neural network to perform a classification; in
addition to the spectral properties of a pixel, however, he included the spectral mea-
surements of the 3 × 3 neighbourhood in order to allow spatial context to influence
the labelling. Although quantitative accuracies are not given, Hepner is of the view
that the results are better than when using a maximum likelihood classifier trained
on spectral data only. Lippmann (1987) and Pao (1989) are good general references
to consult for a wider treatment of neural network theory than has been given here,
including other training methods. Both demonstrate also how neural networks can be
used in unsupervised as well as supervised classification. Paola and Schowengerdt
(1995a,b) provide a comprehensive review of the use of the multilayer Perception in
remote sensing.

A range of neural network tools is available in MATLAB (1984–2004).
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References for Chapter 8

The classification techniques used in remote sensing image analysis come from the field of
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classes, or is left unclassified. Decision tree procedures are also possible. In these a series of
decisions is taken in order to determine the correct label for a pixel. As an illustration, the first
decision might allow a distinction to be made between water, shadow and fire burnt pixels on
the one hand, and vegetation, urban and cleared regions on the other. Subsequent decisions
then allow finer subdivisions leading ultimately to a single label for the pixel. Advantages of
this approach include the fact that different sets of features can be used at each decision stage
and indeed even different algorithms could be employed. Its use in remote sensing problems
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of layered classification techniques (Nilsson, 1965, 1990). Section 11.8 treats decision trees.
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algorithm will be found in Rosenfeld, Hummel and Zucker (1976). Statistical methods for
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by Mohn et al. (1987).

For a first reading on neural networks, beyond the material presented here, the paper by
Lippmann (1987) is recommended.
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Problems

8.1 Suppose you have the following training data for three spectral classes, in which each
pixel is characterised by only two spectral components λ1 and λ2.

Develop the discriminant functions for a maximum likelihood classifier and use them to
classify the patterns

x1 =
[

5
9

]
x2 =

[
9
8

]
x3 =

[
15
9

]
under the assumption of equal prior probabilities.

8.2 Repeat question 1 but with the prior probabilities

p(1) = 0.048
p(2) = 0.042
p(3) = 0.910

8.3 Using the data of question 1 develop the discriminant functions for a minimum distance
classifier and use them to classify the patterns x1, x2 and x3.

8.4 Develop a parallelepiped classifier from the training data given in question 1 and compare
its classifications with those of the maximum likelihood classifier for the patterns x1, x2 and
x3, and the new pattern

x4 =
[

3
7

]
At the conclusion of the tests in questions 8.1, 8.3 and 8.4, it would be worthwhile sketching a
multispectral (pattern) space and then locating in it the positions of the training data. Use this to
form a subjective impression of the performance of each classifier in questions 8.1, 8.3 and 8.4.

8.5 The following training data represents a subset of that in question 1 for just two of the
classes. Develop discriminant functions for both maximum likelihood and minimum distance
classifiers and use them to classify the patterns

x5 =
[

14
7

]
x6 =

[
20
13

]
Classify these patterns also using the minimum distance and maximum likelihood classifiers
developed on the full training sets of question 1 and compare the results.
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8.6 Suppose a particular scene consists of just water and soil, and that a classification into
these cover types is to be carried out on the basis of near infrared data using the maximum
likelihood rule. When the thematic map is produced it is noticed that some water pixels are
erroneously labelled as soil. How can this happen, and what steps could be taken to avoid
it? Hint: Sketch some typical one dimensional normal distributions to represent the soil and
water in infrared data, noting that soil would have a very large variance while that for water
would be small. Remember the mathematical distribution functions extend to infinity.



9
Clustering and Unsupervised Classification

9.1
Delineation of Spectral Classes

The successful application of maximum likelihood classification is dependent upon
having delineated correctly the spectral classes in the image data of interest. This is
necessary since each class is to be modelled by a normal probability distribution, as
discussed in Chap. 8. If a class happens to be multimodal, and this is not resolved,
then clearly the modelling cannot be very effective.

Users of remotely sensed data can only specify the information classes. Occa-
sionally it might be possible to guess the number of spectral classes in a particular
information class but, in general, the user would have little idea of the number of
distinct unimodal groups that the data falls into in multispectral space. Gaussian
mixture modelling can be used for this purpose (Sect. 8.7) but the complexity of es-
timating simultaneously the number of Gaussian components, and their parameters,
can make this approach difficult to use. Clustering procedures are practical alterna-
tives that can be used for that purpose; these are methods that have been applied in
many data analysis fields to enable inherent data structures to be determined.

Clustering can also be used for unsupervised classification. In this technique an
image is segmented into unknown classes. It is the task of the user to label those
classes afterwards.

There are a great number of clustering methods. In this chapter only those com-
monly employed with remote sensing data are treated.

9.2
Similarity Metrics and Clustering Criteria

Clustering implies a grouping of pixels in multispectral space. Pixels belonging to
a particular cluster are therefore spectrally similar. In order to quantify this rela-
tionship it is necessary to devise a similarity measure. Many similarity metrics have
been proposed but those used commonly in clustering procedures are usually simple
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Fig. 9.1. Two apparently acceptable clusterings of a set of two dimensional data

distance measures in multispectral space. The most frequently encountered are Eu-
clidean distance and L1 (or interpoint) distance. If x1 and x2 are two pixels whose
similarity is to be checked then the Euclidean distance between them is

d(x1, x2)=||x1 − x2||
= {(x1 − x2)

t (x1 − x2)} 1
2

=
{

N∑
i=1

(x1i
− x2i

)2

} 1
2

(9.1)

where N is the number of spectral components. The L1 distance between the pixels is

d(x1, x2) =
N∑

i=1

|x1i
− x2i

|. (9.2)

Clearly the latter is computationally faster to determine. However it can be seen as
less accurate than the Euclidean distance measure.

By using a distance measure it should be possible to determine clusters in data.
Often however there could be several acceptable clusters assignments of the data, as
depicted in Fig. 9.1, so that once a candidate clustering has been found it is desirable
to have a means by which the “quality” of clustering can be measured. The availability
of such a measure should allow one cluster assignment of the data to be chosen over
all others.

A common clustering criterion or quality indicator is the sum of squared error
(SSE) measure, defined as

SSE =
∑
Ci

∑
x∈Ci

(x − mi )
t (x − mi )

=
∑
Ci

∑
x∈Ci

||x − mi ||2 (9.3)
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where mi is the mean of the ith cluster and x ∈ Ci is a pattern assigned to that
cluster. The outer sum is over all the clusters. This measure computes the cumulative
distance of each pattern from its cluster centre for each cluster individually, and then
sums those measures over all the clusters. If it is small the distances from patterns to
cluster means are all small and the clustering would be regarded favourably.

Other quality of clustering measures exist. One popular one is to derive a “within
cluster scatter measure” by determining the average covariance matrix of the clusters,
and a “between cluster scatter measure” by looking at the means of the clusters
compared with the global mean of the data. These two measures are combined into
a single figure of merit as discussed in Duda, Hart and Stork (2001) and Coleman
and Andrews (1979). It can be shown that figures of merit such as these are similar
to the sum of squared error criterion.

It is of interest to note that SSE has a theoretical minimum of zero, which corre-
sponds to all clusters containing only a single data point. As a result, if an iterative
method is used to seek the natural clusters or spectral classes in a set of data then it
has a guaranteed termination point, at least in principle. In practice it may be too ex-
pensive to allow natural termination. Instead, iterative procedures are often stopped
when an acceptable degree of clustering has been achieved.

It is possible now to consider the implementation of an actual clustering algo-
rithm. While it should depend upon a progressive minimisation (and thus calculation)
of SSE this is impracticable since it requires an enormous number of values of SSE
for the evaluation of all candidate clusterings. For example, there are approximately
Cp/C! ways of placing P patterns into C clusters (Duda, Hart and Stork, 2001).
This number of SSE values would require computation at each stage of clustering
to allow a minimum to be chosen. Rather than embark upon such a rigorous and
computationally expensive approach the heuristic procedure of the following section
is usually adopted in practice.

Similarity metrics for clustering can incorporate measures other than spectral
likeness. Spatial proximity might be important in some applications as might com-
ponents that account for categorical information. For example, clustering crop pixels
might be guided by all of multispectral measurements, soil type and spatial contiguity.
These more general metrics are not covered here.

9.3
The Iterative Optimization (Migrating Means)
Clustering Algorithm

The iterative optimization clustering procedure, also called the migrating means
technique, is essentially the isodata algorithm presented by Ball and Hall (1965).
It is based upon estimating some reasonable assignment of the pixel vectors into
candidate clusters and then moving them from one cluster to another in such a way
that the SSE measure of the preceding section is reduced.
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9.3.1
The Basic Algorithm

The iterative optimization algorithm is implemented by the following set of basic
steps:

1. The procedure is initialised by selecting C points in multispectral space to serve
as candidate cluster centres. Let these be called

m̂i , i = 1, . . . C.

The selection of the m̂i at this stage is arbitrary with the exception that no two
may be the same. To avoid anomolous cluster generation with unusual data sets it
is generally wise to space the initial cluster means uniformly over the data. This
can also serve to enhance convergence.
Besides choosing the m̂i the number of clusters C, must be specified beforehand
by the user.

2. The location x of each pixel in the segment of the image to be clustered is examined
and the pixel is assigned to the nearest candidate cluster. This assignment would
be made on the basis of the Euclidean or even L1 distance measure.

3. The new set of means that result from the grouping produced in Step 2 are com-
puted. Let these be denoted

mi , i = 1, . . . C.

4. If mi = m̂i for all i, the procedure is terminated. Otherwise m̂i is redefined as
the current value of mi and the procedure returns to Step 2.

The iterative optimization procedure is illustrated for a simple set of two dimen-
sional patterns in Fig. 9.2.

9.3.2
Mergings and Deletions

Once clustering is completed, or at any suitable intervening stage, the clusters can
be examined to see whether

(i) any clusters contain so few points as to be meaningless (e.g. that they would
not give acceptable statistics estimates if used in training a maximum likelihood
classifier), or

(ii) some clusters are so close together that they represent an unnecessary or indeed
an injudicious division of the data, and thus they should be merged.

In view of the material of Sect. 8.2.6 a guideline exists for (i), viz that a cluster
would be of little value for training a maximum likelihood classifier if it did not
contain about 10N points whereN is the number of spectral components. In Chap. 10,
which deals with separability and divergence, means for deciding whether clusters
should be merged can also be devised.
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Fig. 9.2. An illustration of clustering by iterative optimization (or the isodata method). As
noted, the method leads to a progressive reduction in SSE
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9.3.3
Splitting Elongated Clusters

Another stage that can be inserted into the isodata algorithm is to separate elongated
clusters into two new clusters. Usually this is done by prespecifying a standard
deviation in each spectral band beyond which a cluster should be halved. Again this
can be done after a set number of iterations, also specified by the user.

9.3.4
Choice of Initial Cluster Centres

Initialisation of the iterative optimization procedure requires specification of the
number of clusters expected, along with their starting positions. In practice the actual
or optimum number of clusters to choose will not be known. Therefore it is often
chosen conservatively high, having in mind that resulting inseparable clusters can be
consolidated after the process is completed, or at intervening iterations, if a merging
operation is available.

The choice of the initial locations of the cluster centres is not critical although
evidently it will have an influence on the time it takes to reach a final, acceptable
clustering. Since no guidance is available in general, the following is a logical pro-
cedure (Phillips 1973). The initial cluster centres are chosen uniformly spaced along
the multidimensional diagonal of the multispectral pixel space. This is a line from the
origin to the point corresponding to the maximum brightness value in each spectral
component (corresponding to 255 for 8 bit data, etc.). This choice can be refined
if the user has some idea of the actual range of brightness values in each spectral
component, say by having previously computed histograms. In that case the cluster
centres would be initialised along a diagonal through the actual multidimensional
extremities of the data.

Choice of the initial locations of clusters in the manner described is a reasonable
and effective one since they are then well spread over the multispectral space in a
region in which many spectral classes occur, especially for correlated data such as
that corresponding to soils, rocks, concretes, etc.

9.3.5
Clustering Cost

Obviously the major limitation of the isodata technique is the need to prespecify the
number of cluster centres. If this specification is too high then a posteriori merging
can be used; however this is an expensive strategy. On the other hand, if too few are
chosen initially then some multimodal spectral classes will result which, in turn, will
prejudice ultimate classification accuracy.

Irrespective of whether too many or too few clusters are used, the isodata approach
is computationally expensive since, at each iteration, every pixel must be checked
against all cluster centres. Thus for C clusters and P pixels, PC distances have to be
computed at each iteration and the smallest found. For N band data, each Euclidean
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distance calculation will require N multiplications and N additions, ignoring the
square root operation in (9.1) since that need not be carried out.Thus for 20 classes and
10,000 pixels, 100 iterations isodata clustering requires 20 million multiplications
per band of data.

9.4
Unsupervised Classification and Cluster Maps

At the completion of clustering, pixels within a given group are usually given a
symbol to indicate that they belong to the same cluster or spectral class. Using these
symbols a cluster map can be produced; this is a map corresponding to the image
which has been clustered, but in which the pixels are represented by their symbol
rather than by the original multispectral data. Sometimes only part of an image is
used to form the cluster centres, but all pixels can be allocated to one of the clusters
through, say, an minimum distance assignment.

The availability of a cluster map allows a classification to be made. If some pixels
with a given label can be identified with a particular ground cover type (by means of
maps, site visits or other forms of reference data) then all pixels with the same label
can be associated with that class. This method of image classification, depending
as it does on a posteriori recognition of the classes, is called unsupervised classifi-
cation since the analyst plays no part until the computational aspects are complete.
Often unsupervised classification is used as a stand-alone technique, particularly
when reliable training data for supervised classification cannot be obtained or is too
expensive to acquire. However, it is also of value, as noted earlier, to determine the
spectral classes that should be considered in a subsequent supervised approach. This
is pursued in detail in Chap. 11.

9.5
A Clustering Example

To illustrate the nature of the results produced by the iterative optimization algorithm
a simple example with Landsat multispectral scanner data is presented. Figure 9.3a
shows a small image segment (band 7 only for illustration) which consists of regions
of crops and background soils. Figure 9.3b shows a scatter diagram for the image.
In this, band 7 versus band 5 brightnesses of the pixels have been plotted. This is a
subspace of the full four dimensional multispectral space of the image and gives an
illustration of how the data points are distributed.

The data was clustered using the iterative optimization procedure (Kelly, 1983).
Only five iterations were used and the algorithm was asked to determine five clusters.
Merging and splitting options were employed at the end of each iteration leading
ultimately to the four clusters shown on the plot of cluster means in Fig. 9.3c and
to the cluster map shown in Fig. 9.3d. Comparison with Fig. 9.3a shows that the
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Fig. 9.3. a Image segment used in the clustering illustration; b band 7 versus band 5 scatter
diagram for the image; c cluster centres on a band 7 versus band 5 diagram; d cluster map
produced by the isodata algorithm.
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Table 9.1. Cluster means and standard deviations for Fig. 9.3. generated by the iterative
optimization procedure

vegetation classes have been segmented more finely than the background soils in
this case. Nevertheless the cluster map displays acceptable spatial homogeneity.
Numerical details of the clusters established are given in Table 9.1.

It is important to realise that the results generated in this example are not unique
but depend upon the clustering parameters chosen. In practice the user may need
to apply the algorithm several times with different parameter values to generate the
desired segmentation.

9.6
A Single Pass Clustering Technique

In order to reduce the cost of clustering image data, alternatives to iterative optimiza-
tion have been proposed and are widely implemented in software packages for remote
sensing image analysis. Often what they gain in speed they may lose in accuracy;
however if the user is aware of their characteristics they can usually be employed
effectively. One fast clustering procedure which requires only a single pass through
the data is described in the following subsection.

9.6.1
Single Pass Algorithm

Not all of the region to be clustered must be used in developing cluster centres but
rather, for cost reduction, a randomly selected sample may be chosen and the samples
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Fig. 9.4. Illustration of generation of cluster centres
using the first row of samples

Fig. 9.5. Means by which pixels in the
second and subsequent rows of sam-
ples are handled in the single pass clus-
tering algorithm

arranged into a two dimensional array. The first row of samples is then used to obtain
a starting set of cluster centres. This is initiated by adopting the first sample as the
centre of the first cluster. If the second sample in the first row is further away from
the first than a user specified critical distance then it is used to form another cluster
centre. Otherwise the two samples are said to belong to the same cluster and their
mean is computed as the new cluster centre. This procedure, which is illustrated in
Fig. 9.4, is applied to all samples in the first row. Once this row has been exhausted
the multidimensional standard deviations of the clusters are computed. Each sample
in the second and subsequent rows is checked to see which cluster it is closest to.
It is assigned to that cluster, and the cluster statistics recomputed, if it lies within a
user-prescribed number of standard deviations. Otherwise it is used to form a new
cluster centre (which is assigned a nominal standard deviation). This is depicted in
Fig. 9.5. In this manner all of the samples are clustered and clusters with less than
a prescribed number of pixels are deleted. Should a cluster map be required then
the original segment of image data is scanned pixel by pixel and each pixel labelled
according to the class it is closest to (on the basis usually of Euclidean distance).
Should it be an outlying pixel in terms of the available cluster centres it is not labelled.
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9.6.2
Advantages and Limitations

Apart from speed, a major advantage of this approach over the isodata procedure
is its ability to create cluster centres as it proceeds. It is therefore not necessary for
the user to specify beforehand the required number of clusters. However the method
has two limitations. First, the user has to have a feel for the parameters required by
the algorithm. In particular the user has to specify the critical distance parameter
sensibly to enable the initial cluster centres to be established in a reasonable manner.
Also the user has to know how many standard deviations should be used in assigning
pixels in the second and subsequent lines of samples to existing clusters. Clearly,
with experience, these parameters can be estimated reasonably.

The second limitation is that the method is dependent upon the first line of samples
to initiate the clustering. Since it is only a one pass algorithm and has no feedback
checking mechanism by way of iteration, its ultimate set of cluster centres can depend
significantly on the character of the first line of samples.

9.6.3
Strip Generation Parameter

Adjacent pixels along a line frequently belong to the same cluster, as is to be expected,
particularly for images of cultivated regions. A method therefore for enhancing the
speed of clustering is to compare a pixel with its predecessor and assign it to the
same cluster immediately if it is similar. The similarity check often used is quite
straightforward, consisting of a check of the brightness difference in each spectral
band. The difference allowable for two pixels to be considered part of the same cluster
is called the strip generation parameter.

9.6.4
Variations on the Single Pass Algorithm

The technique outlined in the preceding section has a number of variations. For
example, the initial cluster centres can be specified by the user or alternatively can
be created from the data using a critical distance parameter as illustrated in Fig. 9.4.
Moreover rather than use a multiplier of standard deviation for assigning pixels from
the second and subsequent rows of samples, some algorithms proceed exactly as for
the first row, with standard deviation information not used at all. Some algorithms
use the L1 metric of (9.2), rather than Euclidean distance, and some check inter-
cluster distances and merge if this is indicated; periodically small clusters can also
be eliminated.

The package known as MultiSpec, also uses just critical distance parameters over
the full range, although the user can specify a different critical distance for the second
and later rows of samples (Landgrebe and Biehl, 2004).
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9.6.5
An Example

As an illustration, the single pass procedure has been applied to the data of Fig. 9.3a.
An initial critical distance of 15.0 was used, along with a standard deviation multiplier
of 20.0 and a strip generation parameter of 1.0. The results produced are shown in
Table 9.2 and Fig. 9.6. Two points are to be noted. First, different clusters have
been found compared with those of the iterative optimization algorithm in Sect. 9.5.
In this case there are two soil and two vegetation classes. Secondly, the essential
spatial character of the classes has been produced with this algorithm even though
the cluster centres generated are also at different locations in the multispectral space.
Again, the procedure may need to be used interactively in practice to achieve a desired
segmentation.

Table 9.2. Cluster means and standard deviations for Fig. 9.6. generated by the single pass
algorithm

9.7
Agglomerative Hierarchical Clustering

Another clustering technique that does not require the user to specify the number of
classes beforehand is hierarchical clustering. In fact this method produces an output
that allows the user to decide the set of natural groupings into which the data falls.
The procedure commences by assuming all pixels are individual clusters, it then
systematically merges neighbouring clusters by checking distances between means.
This is continued until all pixels appear in a single, larger cluster.An important aspect
of the approach is that the history of mergings, or fusions as they are usually called
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Fig. 9.6. a Cluster map and b cluster centres produced for the data of Fig. 9.3a, using the
single pass clustering procedure

in this method, is displayed on a dendrogram. This is a diagram that shows at what
distances between centres particular clusters are merged. An example of hierarchical
clustering, along with its fusion dendrogram is shown in Fig. 9.7. This uses the same
two dimensional data set as Fig. 9.2, but note that the ultimate cluster compositions
are slightly different. This demonstrates again that different algorithms can and do
produce different clusterings.

The fusion dendrogram of a particular hierarchical clustering exercise can be
inspected in an endeavour to determine the intrinsic number of clusters or spectral
classes in the data. Long vertical sections in the dendrogram between fusions indicate
regions of “stability” which reflect natural data groupings. In Fig. 9.7 the longest
region on the distance scale between fusions corresponds to two clusters in the data.
One could conclude therefore that this data falls most naturally into two groups.

In the example presented, similarity between clusters was judged on the basis of
Euclidean distance. Other similarity measures exist and are sometimes used, includ-
ing divergence metrics as covered in Chap. 10.

The method given above is called agglomerative in view of its starting with a
large number of clusters which it fuses progressively into a single cluster. Divisive
hierarchical clustering procedures also exist in which the data is initialised as a single
cluster which is progressively subdivided; these are more expensive computationally
and are rarely used. Indeed hierarchical clustering generally does not find a lot of
application in remote sensing image analysis since usually a large number of pixels
is involved. Nevertheless it is a useful technique for small image data segments
particularly since it can reveal data structure.
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Fig. 9.7. An illustration of agglomerative hierarchical clustering, using Euclidean distance as
a similarity measure
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9.8
Clustering by Histogram Peak Selection

A multidimensional histogram of a segment of image data may exhibit peaks at the
locations of spectral classes or clusters. Consequently, a further clustering technique
adopted with remote sensing data is to construct such a histogram and then search it
to find the location of its peaks. Pixels are then associated with the nearest peak to
produce the clusters. This method has been described by Letts (1978).

In using histogram peak selection as a clustering technique it is important to
keep in mind that the data and the histogram are discrete in nature and not contin-
uous, as shown in Fig. 9.8. To see the implications of this, consider the following
calculation. A 100 pixel by 100 pixel image segment consists of 10,000 pixels. Sup-
pose this corresponds to data with four spectral components each quantised into 256
levels of brightness. Then the corresponding four dimensional histogram will have
(256)4 = 4295 million bins or locations into which counts (pixels) will be accumu-
lated. If the bins were filled uniformly then a very sparse histogram would result.
Indeed, on the average, there would be only one pixel per half a million bins. Each
pixel therefore would appear as a local peak, which clearly would not be a true cluster.
The bins of course would not be filled uniformly but nevertheless with bins only one
brightness value wide in each spectral component, many artificial peaks will result
from some isolated bins occupied by a single pixel and surrounded by empty bins. To
circumvent this problem the histogram is accumulated with bins which are several
brightness values wide in each dimension. In addition the dynamic range of the data
in each dimension is ascertained beforehand from an inspection of the individual
histograms in those dimensions. As an illustration, if the individual spectral compo-
nent histograms for the four bands covered the ranges (35,95), (25,105), (20,80) and
(5,65) and bin sizes of 10 brightness values were chosen for each dimension then the

Fig. 9.8. Illustration of a two dimensional histogram emphasising its discrete nature
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Fig. 9.9. False indication of peaks in a two
dimensional histogram, when the peak detec-
tion algorithm only searches parallel to the
bins

total number of four dimensional bins is now 6×8×6×6 = 1728. With a 100×100
pixel image segment therefore, there are, on the average, 6 pixels per bin which is
probably acceptable (although low) to guarantee that peaks determined represent the
location of real clusters in the data and not artifacts. Clearly resolution is sacrificed
but this is necessary to yield an acceptable clustering by this approach.

The maximum detection algorithm used in this clustering procedure cannot be too
sophisticated otherwise the method becomes too expensive to implement. Usually
it consists of locating bins in which the count is higher than in the neighbouring
bins along the same row and down the same column. For correlated data this can
sometimes lead to false indications of peaks, as depicted in Fig. 9.9, in the vicinity
of true peaks. This will be so particularly for smaller bin sizes. A better maximum
detection procedure is to check diagonal neighbours as well but of course this doubles
the search time.

Clearly this technique is only useful when the dimensionality of the data is low
(just a few spectral bands). Because of the enormous number of bins that would be
generated, and the extreme sparseness of the resulting histogram (see Problem 1.9),
the method is not applicable to hyperspectral data sets.

References for Chapter 9

Cluster analysis is a common tool in many applications that involve large amounts of data.
Consequently source material on clustering algorithms will be found spread over many disci-
plines including numerical taxonomy, the social sciences and the physical sciences. However,
because of the immense volumes of data to be clustered in remote sensing, the range of tech-
niques that can be used is limited largely to those methods presented in this chapter and to their
variations. Some more general treatments however that may be of value include Anderberg
(1973), Hartigan (1975), Tryon and Bailey (1970) and Ryzin (1977).
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Problems

9.1 Repeat the exercise of Fig. 9.2 but with

(i) two initial cluster centres at (2,3) and (5,6),
(ii) three initial cluster centres at (1,1), (3,3) and (5,5), and
(iii) three initial cluster centres at (2,1), (4,2) and (15,15).

9.2 From a knowledge of how a particular clustering algorithm works it is sometimes possible
to infer the multidimensional spectral shapes of the clusters generated. For example, methods
that depend entirely upon Euclidean distance as a similarity metric would tend to produce
hyperspheroidal clusters. Comment on the cluster shapes you would expect to be generated by
the migrating means technique based upon Euclidean distance and the single pass procedure,
also based upon Euclidean distance.

9.3 Suppose two different techniques have given two different clusterings of a particular set
of data and you wish to assess which of the two segmentations is the better. One approach
might be to evaluate the sum of square errors measure treated in Sect. 9.2. Another could
be based upon covariance matrices. For example it is possible to define an “among clusters”
covariance matrix that describes how the clusters themselves are scattered about the data space,
and an average “within class” covariance matrix that describes the average shape and size of
the clusters. Let these be called ΣA and ΣW respectively. How could they be used together
to assess the quality of the two clustering results? (See Coleman and Andrews, 1979) Here
you may wish to use measures of the “size” of a matrix, such as its trace or determinant (see
Appendix D).

9.4 Different clustering methods often produce quite different segmentations of the same set
of data, as illustrated in the examples of Figs. 9.3 and 9.6. Yet the results generated for remote
sensing applications are generally usable. Why do you think that is the case? (Hint: Is it related
to the number of clusters generated?)
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9.5 The Mahalanobis distance of (8.13) can be used as the similarity metric for a clustering
algorithm. Invent a possible clustering technique based upon (8.13) and comment on the nature
of the clusters generated.

9.6 Do you see value in having a two stage clustering process say in which a single pass
procedure is used to generate initial clusters and then an iterative technique is used to refine
them?

9.7 Recompute the agglomerative hierarchical clustering example of Fig. 9.7 but use the L1
distance measure in (9.2) as a similarity metric.

9.8 The histogram peak selection clustering technique of Sect. 9.8 has some shortcomings.
One is related to the need to have large spectral bins in the histogram in order to have a
sensible histogram produced when the data dimensionality is high. A consequence is that
fine spectral resolution is sacrificed leading to loss of discrimination of spectral classes that
are very close. Do you think good spectral discrimination could be regained by applying the
technique several times over, on each subsequent occasion clustering just within one of the
clusters found previously? Discuss the details of this approach.

9.9 Consider the two dimensional data shown in Fig. 9.2, and suppose the three pixels at the
upper right form one cluster and the remainder another cluster. Such an assignment might
have been generated by some clustering algorithm other than iterative optimisation. Calculate
the sum of squared error for this new assignment and compare with the value of 16 found in
Fig. 9.2. Comment?
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Feature Reduction

10.1
Feature Reduction and Separability

Classification cost increases with the number of features used to describe pixel vectors
in multispectral space – i.e. with the number of spectral bands associated with a pixel.
For classifiers such as the parallelepiped and minimum distance procedures this is
a linear increase with features; however for maximum likelihood classification, the
procedure most often preferred, the cost increase with features is quadratic. Therefore
it is sensible economically to ensure that no more features than necessary are utilised
when performing a classification.

Section 8.2.6 draws attention to the number of training pixels needed to ensure
that reliable estimates of class signatues can be obtained. In particular, the number
of training pixels required increases with the number of bands or channels in the
data. For high dimensionality data, such as that from imaging spectrometers, that
requirement presents quite a challenge in practice, so keeping the number of features
used in a classification to as few as possible is important if reliable results are to be
expected from affordable numbers of training pixels.

Features which do not aid discrimination, by contributing little to the separability
of spectral classes, should be discarded. Removal of least effective features is referred
to as feature selection, this being one form of feature reduction. The other is to
transform the pixel vector into a new set of coordinates in which the features that can
be removed are made more evident. Both procedures are considered in some detail
in this chapter.

Feature selection cannot be performed indiscriminantly. Methods must be devised
that allow the relative worths of features to be assessed in a quantitative and rigorous
way. A procedure commonly used is to determine the mathematical separability
of classes; in particular, feature reduction is performed by checking how separable
various spectral classes remain when reduced sets of features are used. Provided
separability is not lowered unduly by the removal of features then those features can
be considered of little value in aiding discrimination.
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10.2
Separability Measures
for Multivariate Normal Spectral Class Models
(Adapted in part from Swain and Davis, 1978)

10.2.1
Distribution Overlaps

Consider a two dimensional multispectral space with two spectral classes as depicted
in Fig. 10.1. Suppose we wish to see whether the classes could be separated using
only one feature – either x1 or x2. Of course it is not known which feature offers the
best prospects a priori. This is what has to be determined by a measure of separability.
Consider an assessment of x1. The spectral classes in the x1 ‘subset’ or subspace are
shown in the figure whereupon some overlap of the single dimensional distributions
is indicated. If the distributions are well separated in the x1 dimension then clearly
the overlap will be small and it would be unlikely that a classifier would make an
error in discriminating between them on the basis of that feature alone. On the other
hand for a large degree of overlap substantial classifier error would be expected. The
usefulness of the x1 feature subset therefore can be assessed in terms of the overlap
of the distributions in that domain, or more generally, in terms of the similarity of
the distributions as a function of x1 alone.

Consider now an attempt to quantify the separation between a pair of probability
distributions (as models of spectral classes) as an indication of the degree of overlap.
Clearly distance between means is insufficient since overlap will also be influenced
by the standard deviations of the distributions. Instead, a combination of both the

Fig. 10.1. Two dimensional multispectral space
showing a hypothetical degree of separation pos-
sible in a single dimension subspace (in which
class densities are shown)
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distance between means and a measure of standard deviation is required. Moreover
this must be a vector-based measure in order to be applicable to multidimensional
subspaces. Several such measures are available; only those commonly encountered
in connection with remote sensing data are treated in this chapter. Others may be
found in books on statistics that treat similarities in probability distributions. These
measures are all referred to as measures of separability which implies the ease with
which patterns can be correctly associated with their classes using statistical pattern
classification.

10.2.2
Divergence

10.2.2.1
A General Expression

Divergence is a measure of the separability of a pair of probability distributions that
has its basis in their degree of overlap. It is defined in terms of the likelihood ratio

Lij (x) = p(x|ωi)/p(x|ωj )

where p(x|ωi) and p(x|ωj ) are the values of the ith and j th spectral class probability
distributions at the position x. These are shown in an overlap region in Fig. 10.2
whereupon it is evident that Lij (x) is a measure of ‘instantaneous’ overlap. Clearly
for very separable spectral classes Lij (x) = 0 or ∞ for all x.

It is of value to choose the logarithm of the likelihood ratio, viz

L′
ij = ln p(x|ωi) − ln p(x|ωj ),

by means of which the divergence of the pair of class distribution is defined as

dij = E{L′
ij (x)|ωi} + E{L′

ji(x)|ωj } (10.1)

where E{} is the expectation operator defined for continuous distributions as

E{L′
ij (x)|ωi} =

∫
x

L′
ij (x) p(x|ωi) dx.

This is the average or expected value of the likelihood ratio with respect to all patterns

Fig. 10.2. Definition of the probabil-
ities used in the likelihood ratio
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in the ith spectral class. Similarly for E{L′
ji(x)|ωj }. From (10.1) it can be seen that

dij =
∫
x

{p(x|ωi) − p(x|ωj )} ln
p(x|ωi)

p(x|ωj )
dx

from which a number of properties of divergence can be established. For example it
is always positive and also dji = dij , as should be the case – i.e., it is symmetric.
Moreover, if p(x|ωi) = p(x|ωj ) for all x then dij = dji = 0 – in other words there
is no divergence (or difference) between a distribution and itself.

For statistically independent features (i.e., spectral components) x1, x2, · · · ,

xN then

p(x|ωi) =
N∏

n=1

p(xn|ωi)

which leads to

dij (x) =
N∑

n=1

dij (xn).

Since divergence is never negative it follows therefore that

dij (x1, · · · xn, xn+1) > dij (x1, · · · xn).

In other words, divergence never decreases as the number of features is increased.
The material to this point has been general, applying to any multivariate spectral

class model.

10.2.2.2
Divergence of a Pair of Normal Distributions

Since spectral classes in remote sensing image data are modelled by multidimen-
sional normal distributions it is of particular interest to have available the specific
form of (10.1) when p(x|ωi) and p(x|ωj ) are normal distributions with means and
covariances of mi , Σi and mj , Σj respectively.

By substitution of the full expressions for the normal distributions it can be
shown that

dij = 1

2
Tr

{
(Σi − Σj)(Σ

−1
j − Σ−1

i )
}

+1

2
Tr

{
(Σ−1

i + Σ−1
j )(mi − mj )(mi − mj )

t
}

= Term 1 + Term 2.

(10.2)

where Tr{} is the trace of the subject matrix. Note that Term 1 involves only covari-
ances whereas Term 2 is the square of a normalised (by covariance) distance between
the means of the distributions.

Equation (10.2) gives the divergence between a pair of spectral classes that are
normally distributed. Should there be more than two spectral classes, as is generally
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the case, all pairwise divergences need to be checked to see whether a particular
feature subset gives sufficiently separable data. An average indication of separability
is then given by computing the average divergence

dave =
M∑
i=1

M∑
j=i+1

p(ωi) p(ωj ) dij (10.3)

where M is the number of spectral classes and p(ωi), p(ωi) are the class prior
probabilities.

10.2.2.3
Use of Divergence for Feature Selection

Consider the need to select the best three discriminating channels for Landsat mul-
tispectral scanner data, for an image in which only three spectral classes exist. The
pairwise divergence between each pair of spectral classes would therefore be deter-
mined for all combinations of three out of four channels or bands. The feature subset
chosen would be that which gives the highest overall indication of divergence –
presumably this would be the highest average divergence. Table 10.1 illustrates the
number of divergence calculations required for such an example.

In general, for M spectral classes, N total features, and a need to select the best
n feature subset, the following set of pairwise divergence calculations are necessary,
leaving aside the need finally to compute the average divergence for each subset.

First there are NCn possible combinations of n features from the total N , and for
each combination there are MC2 pairwise divergence measures to be computed. For
a complete evaluation therefore

NCn · MC2

measures of pairwise divergence have to be calculated. To assess the best 4 of 7
Landsat Thematic Mapper bands for an image involving 10 spectral classes then

7C4 ·10 C2 = 1575

divergence values have to be computed. Inspection of (10.2) shows each divergence
calculation to be considerable. This, together with the large number required in
a typical problem, makes the use of divergence to check separability and indeed
separability analysis in general, an expensive process computationally.

Table 10.1. Divergence calculation table

* Entries to be calculated
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10.2.2.4
A Problem with Divergence

As spectral classes become further removed from each other in multispectral space,
the probability of being able to classify a pattern at a particular location moves
asymptotically to 1.0 as depicted in Fig. 10.3a. If divergence is similarly plotted it
will be seen from its definition that it increases quadratically with separation be-
tween spectral class means as depicted in Fig. 10.3b. This behaviour unfortunately
is quite misleading if divergence is to be used as an indication of how successfully
patterns in the corresponding spectral classes could be mutually discriminated or
classified. It implies, for example, that at large separations, further small increases
will lead to vastly better classification accuracy whereas in practice this is not the
case as observed from the very slight increase in probability of correct classifica-
tion implied by Fig. 10.3a. Moreover, outlying, easily separable classes will weight
average divergence upwards in a misleading fashion to the extent that sub-optimal
reduced feature subsets might be indicated as best, as illustrated in Swain and Davis
(1978). This problem renders divergence, as it is presently defined, to be unsuitable
and indeed unsatifactory. The Jeffries-Matusita distance in the next section does not
suffer this drawback.

Fig. 10.3. a Probability of correct classification as a function of spectral class separation;
b divergence as a function of spectral class separation
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10.2.3
The Jeffries-Matusita (JM) Distance

10.2.3.1
Definition

The JM distance between a pair of probability distributions (spectral classes) is
defined as

Jij =
∫
x

{√p(x|ωi) − √
p(x|ωj )}2 dx (10.4)

which is seen to be a measure of the average distance between the two class density
functions (Wacker, 1971). For normally distributed classes this becomes

Jij = 2
(

1 − e−B
)

(10.5)

in which

B = 1

8
(mi − mj )

t

{
Σi + Σj

2

}−1

(mi − mj )

+1

2
ln

{ |(Σi + Σj)/2|
|Σi |1/2|Σj |1/2

}
(10.6)

which is referred to as the Bhattacharyya distance (Kailath, 1967).
It is of interest to note that the first term in B is akin to the square of the normalised

distance between the class means. The presence of the exponential factor in (10.5)
gives an exponentially decreasing weight to increasing separations between spectral
classes. If plotted as a function of distance between class means it shows a saturating
behaviour not unlike that expected for the probability of correct classification, as
seen in Fig. 10.4.

It is asymptotic to 2.0 so that a JM distance of 2.0 between spectral classes would
imply classification of pixel data into those classes, (assuming they were the only
two) with 100% accuracy. This saturating behaviour is highly desirable since it does
not suffer the difficulty experienced with divergence.

Fig. 10.4. Jeffries-Matusita
distance as a function of sep-
aration between spectral class
means
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As with divergence, an average pairwise JM distance can be defined according to

dave =
M∑
i=1

M∑
j=i+1

p(ωi) p(ωj ) Jij (10.7)

where M is the number of spectral classes and p(ωi), p(ωj ) are the class prior
probabilities.

10.2.3.2
Comparison of Divergence and JM Distance

JM distance performs better as a feature selection criterion for multivariate normal
classes than divergence for the reasons given above; however it is computationally
more complex and thus expensive to use as can be assessed from comparison of (10.2)
and (10.6). Suppose a particular problem involves M spectral classes. Consider the
cost then of computing all pairwise divergences and all pairwise JM distances. These
costs can be assessed largely on the basis of having to compute matrix inverses and
determinants, assuming reasonably that they involve similar computational demands
using numerical procedures. In the case of divergence it is necessary to compute only
M matrix inverses to allow all the pairwise divergences to be found. However for
JM distance it is necessary to compute MC2 + M equivalent matrix inverses since
the individual class covariances appear as pairs which have to be added and then
inverted. It may be noted that MC2 + M = 1

2M(M + 1) so that divergence is a
factor of 1

2 (M + 1) more economical to use. When it is recalled how many feature
subsets may need to be checked in a feature selection exercise this is clearly an
important consideration. However the unbound nature of divergence as discussed in
Sect. 10.2.2.4 throws doubt on its usefulness.

10.2.4
Transformed Divergence

10.2.4.1
Definition

A useful modification of divergence becomes apparent by noting the algebraic sim-
ilarity of divergence to the parameter B in JM distance, as defined in (10.6). Since
both involve terms which are functions of the covariance alone, and terms which
appear as normalised distances between class means, it should be possible to make
use of a heuristic transformed divergence measure of the form (Swain and Davis
1978)

dT
ij = 2(1 − e−dij /8). (10.8)

Because of its exponential character it will have a saturating behaviour with in-
creasing class separation, as does JM distance, and yet it is computationally more
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economical. This saturating measure is used in the software package called Multi-
Spec; it has been demonstrated to be almost as effective as JM distance in feature
selection, and considerably better than simple divergence or simple Bhattacharyya
distance (Swain et al., 1971, Mausel et al., 1990).

10.2.4.2
Relation Between Transformed Divergence
and Probability of Correct Classification

It can be shown that the probability of making a classification error in placing a
pattern into one of two (equal prior probability) classes with a pairwise divergence
dij is bound by (Kailath, 1967)

pE >
1

8
e−dij /2,

so that the probability of correct classification is bound by

pC < 1 − 1

8
e−dij /2 .

Since dij = −8 ln

(
1 − 1

2
dT
ij

)
from (10.8),

then PC < 1 − 1

8

(
1 − 1

2
dT
ij

)4

. (10.9)

This bound on classification accuracy is shown in Fig. 10.5 along with an empirical
relationship between transformed divergence and probability of correct (pairwise)
classification derived by Swain and King (1973). This figure has considerable value
in establishing a priori the upper bound achievable on classification accuracy for an
existing set of spectral classes.

Fig. 10.5. Probability of correct classification as
a function of pairwise transformed divergence.
The empirical measure, taken from Swain and
King (1973), was determined using 2790 sets of
multidimensional, normally distributed data, in
two classes
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10.2.4.3
Use of Transformed Divergence in Clustering

One of the last stages in a practical clustering algorithm is to evaluate the size and
relative locations of the clusters produced, as noted in Chap. 9. If clusters are too close
to each other they should be merged. The availability of the information in Fig. 10.5
allows merging to be effected based upon a pre-specified transformed divergence,
since both cluster mean and covariance data is normally available. By establishing
a desired accuracy level (in fact upper bound) for the subsequent classification and
then determining the corresponding value of transformed divergence, clusters with
separabilities less than this value must be merged.

10.3
Separability Measures for Minimum Distance Classification

The separability measures of Sect. 10.2 relate to spectral classes modelled by mul-
tivariate normal distributions, in preparation for maximum likelihood classification.
Should another classifier be used this procedure is unduly complex and largely with-
out meaning. For example, if supervised classification is to be carried out using
the minimum distance to class means technique there is no advantage in using
distribution-based separability measures, since probability distribution class mod-
els are not employed. Instead it is better to use a simple measure consistent with the
nature of the classification algorithm. For minimum distance calculation this would
be a distance measure, computed according to the particular distance metric in use.
Commonly this is Euclidean distance. Consequently, when a set of spectral classes
has been determined, ready for the classification step, the complete set of pairwise
Euclidean distances will provide an indication of class similarities. Unfortunately this
cannot be related to an error probability (for misclassification) but finds application
as an indicator of what pairs of classes could be merged, if so desired.

10.4
Feature Reduction by Data Transformation

The emphasis of the preceding sections has been feature selection – i.e., an evaluation
of the existing set of features for the pixel data in multispectral imagery with a view
to selecting the most discriminating, and discarding the rest. It is also possible to
effect feature reduction by transforming the data to a new set of axes in which
separability is higher in a subset of the transformed features than in any subset of
the original data. This allows transformed features to be discarded. A number of
image transformations could be entertained for this; however the most commonly
encountered in remote sensing are the principal components or Karhunen-Loève
transform and the transformation associated with so-called canonical analysis. These
are treated in the following.
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10.4.1
Feature Reduction Using the Principal Components Transformation

The principal components transformation (see Chap. 6) maps image data into a new,
uncorrelated co-ordinated system or vector space. Moreover, in doing so, it produces
a space in which the data has most variance along its first axis, the next largest
variance along a second mutually orthogonal axis, and so on. The later principal
components would be expected, in general, to show little variance. These could be
considered therefore to contribute little to separability and could be ignored, thereby
reducing the essential dimensionality of the classification space and thus improving
classification speed. This is only of value however if the spectral class structure of
the data is distributed substantially along the first few axes. Should this not be the
case it is possible that feature reduction of the transformed data may be no more
likely than with the original data. In such a case the technique of canonical analysis
may be a better approach.

As an illustration of a situation of data in which principal components transfor-
mation does allow feature reduction, consider the two class two dimensional data
illustrated in Fig. 10.6. Assume that the classes are not separable in either of the
original data variables alone but rather both dimensions are required for separability.
However, inspection indicates that the first component of a principal components
transform will yield class separability. This is now demonstrated mathematically by
presenting the results of hand calculations on the data.

Notwithstanding the class structure of the data the principal components trans-
formation makes use of a global mean and global covariance. Using (6.1) and (6.2)
it is shown readily that

m =
[

4.5
4.25

]
and

Σ =
[

2.57 1.86
1.86 6.21

]

Fig. 10.6. Two dimensional, two class data in
which feature reduction using principal com-
ponents analysis is possible



278 10 Feature Reduction

The eigenvalues of the covariance matrix are λ1 = 6.99 and λ2 = 1.79 so that
the first principal component will contain 79.6% of the variance. The normalised
eigenvectors corresponding to these eigenvalues are

g1 =
[

0.387
0.922

]
and g2 =

[−0.922
0.387

]

so that the principal components transformation matrix is

G =
[

0.387 0.922
−0.922 0.387

]
= Dt in (6.4).

Using this matrix, the first principal component of each pixel vector can be computed
according to

y1 = 0.387x1 + 0.922x2.

These are shown plotted in Fig. 10.7a in which it is seen that the first principal
component is sufficient for separation. Figure 10.7b shows the principal axes relative
to the original image components.

Fig. 10.7. a First principal component
of the image data; b principal axis rel-
ative to original image components
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10.4.2
Canonical Analysis as a Feature Selection Procedure

The principal components transformation is based upon the global covariance matrix
of the full set of image data and thus is not sensitive explicitly to class structure in
the data. The reason it often works well in remote sensing as a feature reduction
tool is a result of the fact that classes are frequently distributed in the direction
of maximum data scatter. This is particularly so for soils and spectrally similar
cover types. Should good separation not be afforded by the principal components
transformation derived from the global covariance matrix then a subset of image data
could be selected that embodies the cover types of interest and this subset used to
compute a covariance matrix. The resulting transformation will have its first principal
axes oriented so that the cover types of interest are well discriminated. Another, more
rigorous, method for generating a transformed set of feature axes, in which class
separation is optimised, is based upon the procedure called canonical analysis. To
illustrate this approach consider the contrived two dimensional, two class data shown
in Fig. 10.8. By inspection, the classes can be seen not to be separable in either of the
original feature axes on their own. Nor will they be separable in only one of the two
principal component axes because of the nature of the global data scatter compared
with the scatter of data within the individual classes.

Fig. 10.8. a Hypothetical two
dimensional, two class data il-
lustrating lack of separability in
either original band or in either
principal component; b axis along
which classes can be separated
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Inspection shows however that the data of Fig. 10.8a can be separated by a sin-
gle feature if an axis rotation (i.e. an image transformation) such as that shown in
Fig. 10.8b is adopted. A little thought reveals that the primary axis in this new trans-
formation should be so-oriented that the classes have the largest possible separation
between their means when projected onto that axis, while at the same time they
should appear as small as possible in their individual spreads. If we characterise the
former by a measure σA as illustrated in the diagram (which can be referred to as the
standard deviation among the classes – it is as if the classes themselves were data
points at their mean positions) and the spread of data within classes as seen on the
new axis as σw1, σw2 as illustrated (these are the standard deviations of the classes)
then our interest is in finding a new axis for which

σ 2
A

σ 2
w

= among categories variance

within categories variance
(10.10)

is as large as possible. Here σ 2
w is the average of σ 2

w1 and σ 2
w2 for the example of

Fig. 10.8.

10.4.2.1
Within Class and Among Class Covariance Matrices

To handle data with any number of dimensions it is necessary to define average
data scatter within the classes, and the scatter of the classes themselves around the
multispectral space, by covariance matrices.

The average within class covariance matrix is defined as

Σw = 1

M

M∑∑∑∑∑∑∑∑∑
i=1

Σi (10.11a)

where Σi is the covariance matrix of the data in class i and where M is the total
number of classes. The boldface sigma is printed for the summation to distinguish it
from the symbol for covariance. Equation (10.11a) applies only if the classes have
equal populations. A better expression is

Σw =
⎧⎨
⎩

M∑∑∑∑∑∑∑∑∑
i=1

(ni − 1)Σi

⎫⎬
⎭ /Sn (10.11b)

where ni is the population of the ith class and Sn =
M∑∑∑∑∑∑∑∑∑
i=1

ni.

The among class covariance matrix is given by

ΣA = E{(mi − m0)(mi − m0)
t } (10.12)

where mi is the mean of the ith class, E is the expectation operator and m0 is the
global mean, given by

m0 = 1

M

M∑∑∑∑∑∑∑∑∑
i=1

mi (10.13a)
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where the classes have equal populations, or

m0 =
M∑∑∑∑∑∑∑∑∑
i=1

nimi/Sn (10.13b)

in general.

10.4.2.2
A Separability Measure

Let y = Dtx be the required transformation that generates the new axes y in which
the classes have optimal separation. The transposed form of the transformation matrix
is chosen here to simplify the following expressions. By the same procedure that was
used for the principal components transformation in Sect. 6.1.2 it is possible to show
that the within class and among class covariance matrices in the new co-ordinate
system are

Σw,y = DtΣw,xD (10.14a)

ΣA,y = DtΣA,xD (10.14b)

where the subscripts x and y have been used to identify the matrices with their re-
spective co-ordinates. It is significant to realise here, unlike with the case of principal
components analysis, that the two new covariance matrices are not necessarily diag-
onal. However, as with principal components the row vectors of Dt define the axis
directions in y-space. Let d t be one particular vector (say the one that defines the
first so-called canonical axis, along which the classes will be optimally separated),
then the corresponding within class and among class variances will be

σ 2
w = d tΣw,xd

σ 2
A = d tΣA,xd .

What we wish to do is to find the d, (and in fact ultimately the full transformation
matrix Dt ) for which

λ = σ 2
A/σ 2

w = d tΣA,xd/d tΣw,xd (10.15)

is maximised. In the following the axis subscripts on the covariance matrices have
been dropped for convenience.

10.4.2.3
The Generalised Eigenvalue Equation

The ratio of variances λ in (10.15) is maximised by the selection of d if

∂λ

∂d
= 0.
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Noting the identity that
∂

∂x
{xtAx} = 2Ax then

∂λ

∂d
= ∂

∂d
{(d tΣAd)(d tΣwd)−1}

= 2ΣAd(d tΣwd)−1 − 2Σwd(d tΣAd)(d tΣwd)−2

= 0.

This reduces to

ΣAd − Σwd(d tΣAd)(d tΣwd)−1 = 0.

Which can be written as

(ΣA − λΣw)d = 0 (10.16)

Equation (10.16) is called a generalised eigenvalue equation and has to be solved
now for the unknowns λ and d. The first canonical axis will be in the direction of
d and λ will give the associated ratio of among class to within class variance along
that axis.

In general (10.16) can be written

(ΣA − �Σw)D = 0 (10.17)

where � is a diagonal matrix of the full set of λ’s and D is the matrix of vectors d.
The development to this stage is usually referred to as discriminant analysis. One

additional step is included in the case of canonical analysis.
As with the equivalent step in the principal components transformation, solu-

tion of (10.16) amounts to finding the set of eigenvalues λ and the corresponding
eigenvectors, d . While unique values for λ can be determined the components of
d can only be found relative to each other. In the case of principal components we
introduced the additional requirement that the vectors have unit magnitude, thereby
allowing the vectors to be determined uniquely. For canonical analysis, the additional
constraint used is

DtΣwD = I. (10.18)

This says that the within class covariance matrix after transformation must be the
identity matrix (i.e. a unit diagonal matrix). In other words, after transformation, the
classes should appear spherical.

For M classes and N bands of multispectral data, if N > M − 1 there will
only be M − 1 non-zero roots of (10.17) and thus M − 1 canonical axes (Seal,
1964). For this example, in which N = 2, M = 2, one of the eigenvalues of (10.16)
will be zero and thus the corresponding eigenvector will not exist. This implies that
the dimensionality of the transformed space will be less than that of the original
data. Thus canonical analysis provides separability with reduced dimensionality. In
general, in the first canonical axis, corresponding to the largest λ, the classes will
have maximum separation. The second axis, corresponding to the next largest λ, will
provide the next best degree of separation, and so on. Campbell and Atchley (1981)
review canonical analysis with a particular emphasis on a geometrical interpretation.
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10.4.2.4
An Example

Consider the two dimensional, two category data shown in Fig. 10.9. Both of the
original features x1 and x2 are required to discriminate between the categories. We
will now perform a canonical analysis transformation on the data to show that the
categories can be discriminated in the first canonical axis.

The individual covariance matrices of the classes are

ΣA =
[

2.25 2.59
2.59 4.25

]
ΣB =

[
4.25 3.00
3.00 6.67

]

so that the within class covariance is

Σw = 1

2
{ΣA + ΣB} =

[
3.25 2.80
2.80 5.46

]
.

The among class covariance matrix is

ΣA =
[

8.00 5.50
5.50 3.78

]
.

The canonical transformation matrix Dt is given by a solution to (10.17) where D

is a matrix of column vectors. These vectors are the axes in the transformed space,
along the first of which the ratio of among categories variance to within categories
variance is greatest.Along this axis there is most chance of separating the classes. � is
a diagonal matrix of scalar constants that are the eigenvalues of (10.17); numerically
these are the ratios of variances along each of the canonical axes.

Each λ and the accompanying d can be found readily by considering the individ-
ual component equation (10.16) rather than the more general form in (10.17). For
(10.16) to have a non-trivial solution it is necessary that the determinant

|ΣA − λΣw| = 0.

Fig. 10.9. Two classes of two dimensional
data, each containing 4 data points
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Using the values for ΣA and Σw above this is∣∣∣∣8.00 − 3.25λ 5.50 − 2.80λ

5.50 − 2.80λ 3.78 − 5.46λ

∣∣∣∣ = 0

which gives λ = 2.54 or 0. Thus there is only one canonical axis defined by the vector
d corresponding to λ = 2.54. This is given as the solution to

[ΣA − 2.54Σw]d = 0

i.e. [−0.26 − 1.61
−1.61 − 10.09

] [
d1
d2

]
= 0

whereupon d1 = −6.32d2.
At this stage we use (10.18), which for one vector d in D is

[d1 d2 ]
[

3.25 2.80
2.80 5.46

] [
d1
d2

]
= 1

i.e. 3.25 d2
1 + 5.60 d1 d2 + 5.46 d2

2 = 1.
Using d1 = −6.32 d2 gives

d1 = 0.632, d2 = −0.100

so that

d =
[

0.632
−0.100

]
This vector is shown plotted in Fig. 10.10 wherein the projections of the patterns

onto the axis defined by that vector show the classes to be separable. The brightness
values of the pixels in that first axis are given by

y = d tx

= [0.632 − 0.100]x.

Fig. 10.10. The first canonical axis for the
two class data of Fig. 10.9 showing class dis-
crimination
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10.4.3
Discriminant Analysis Feature Extraction (DAFE)

A variation on the canonical analysis development of the previous section is to form
the Fisher criterion

J = T r
{
Σ−1

w,yΣA,y

}
(10.19)

rather than the measure of (10.15). We want to find an axis transformation that
minimises J . Let the transformation be y = Dtx. Then (10.19) can be written

J = T r
{
(DtΣw,xD)−1(DtΣA,xD)

}
.

It is shown by Fukunaga (1990) that differentiating this last expression to find the
transformation matrix Dt that minimises J leads to

Σ−1
w,xΣA,xD = DΣ−1

w,yΣA,y. (10.20)

Consider the transformation z = Bty that diagonalises the transformed among class
covariance ΣA,y :

BtΣA,yB = M .

in which M is diagonal. Thus

ΣA,y = Bt−1
MB−1

so that (10.20) becomes

Σ−1
w,xΣA,xD = DΣ−1

w,yB
t−1

MB−1 (10.21)

As with canonical analysis we now introduce the additional criterion that the within
class covariance matrix be unity after the transformation to z space, so that the classes
then appear hyperspherical. This requires

BtΣw,yB = I

or B−1Σ−1
w,yB

t−1 = I

so that Σ−1
w,yB

t−1 = B which, when substituted into (10.21),

gives Σ−1
w,xΣA,xD = DBMB−1

or Σ−1
w,x

ΣA,xDB = DBM

which we recognise as an eigenfunction equation in which M is a diagonal matrix of
the eigenvalues of Σ−1

w,xΣA,x and (DB) is the matrix of eigenvectors of Σ−1
w,xΣA,x .

Eigenanalysis of Σ−1
w,xΣA,x can be carried out by analysis of Σ−1

w,x and ΣA,x sepa-
rately (Fukunaga, 1990).

The axis along which the data has maximum separability is that corresponding to
the largest eigenvalue of Σ−1

w,xΣA,x , and so on. Deriving the transformed axes based
on minimisation of (10.19) is referred to as discriminant analysis feature extraction
(DAFE).
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10.4.4
Non-parametric Discriminant Analysis
and Decision Boundary Feature Extraction (DBFE)

As with canonical analysis the application of DAFE requires good estimates of the
relevant co-variance matrices. In the case of the within-class matrices, that could be
difficult when the dimensionality of the data is high, as with hyperspectral imagery,
but is often acceptable with data of multispectral order (i.e. several wavebands).

Even when the dimensionality of the data is acceptable, though, there is still an
assumption that the various spectral classes are in some sense “clusters” of similar
pixel vectors so that within class-covariance adequately describes how they spread
about their mean positions, and that between-class covariance, computed from the
means, is also meaningful. Provided spectral classes have been appropriately de-
lineated beforehand, that should not present much of a concern in image labelling
since, by definition, we try to segment the available data into groups whose properties
match the supervised classification algorithm to be employed.

If, however, one or more of the classes were unusual in distribution, such as an
(unresolved spectral) class that might encompass a range of dark and light soil types
and a separate class of vegetative stubble, recorded in the visible and near infrared
region, then feature reduction methods that depend on class means and covariance
matrices may not work well. A class distribution such as that depicted in Fig. 10.11
is an example.

Should those types of class be suspected then it is better to avoid separability
criteria that depend on class statistics and instead try to find a method that is non-
parametric. Non-parametric Discriminant Analysis (NDA) (Fukunaga, 1990), and

class 1

class 2

visible red

ne
ar

 in
fra

re
d

Fig. 10.11. Situation in which DAFE would not be expected to perform well since the mean
of class 2 would be little different from that of class 1, and the within class covariance matrix
of class 2 would not reflect the actual scatter of the data
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its extension to Decision Boundary Feature Extraction (Landgrebe, 2003) is such
an approach. Rather than use class-based measures of mean and covariance, it uses
local statistical properties, in the following manner.

In its simplest form NDA examines the relationship between the training pixels
from one class (in a two class example) and their nearest neighbour training pixels
from the other class. For example, let xj∈s,NNi ∈r be the pixel (j) from class s that
is the nearest neighbour of the ith pixel from class r: xj∈s,NNi ∈r is going to take the
role of the mean vector in the usual type of covariance calculation as far as pixels
from class r are concerned; in this case however the “mean” is different for each
pixel of class r (it is its nearest neighbour – which has to be computed). We can
describe the distribution of the class r pixels with respect to their nearest neighbours
by a covariance like calculation. However, because we are now not describing the
distribution of pixels around a class mean (a parametric description), it is better to
talk about the scatter of pixels with respect to each other, and thus use the term scatter
matrix to describe the measure.

For example, the scatter of (all of) the training pixels from class r about their
nearest neighbours from class s, xj∈s,NNi ∈r , is

Sb1 = E{(xi∈r − xj∈s,NNi ∈r )(xi∈r − xj∈s,NNi ∈r )
t |ωr}

where xi∈r is the ith pixel from class r , E is the expectation operator and the |ωr

conditionality reminds us that the calculation is determined by the training pixels in
class r .

We perform a similar calculation for the scatter of the training pixels from class s

about their class r nearest neighbours, and then average the two measures – usually
weighted by the prior probabilities (or relative training sample abundances) of the
classes:

Sb =Sb1 + Sb2

=p(ωr)E
{
(xi∈r − xj∈s,NNi ∈r )(xi∈r − xj∈s,NNi ∈r )

t |ωr

}
+p(ωs)E

{
(xj∈s − xi∈r,NNj ∈s)(xj∈s − xi∈r,NNj ∈s)

t |ωs

}
More often than not NDA uses not just the nearest neighbour in these calculations,
but instead defines a nearest neighbourhood of k class s training pixels to each class r

training pixel, and then uses the local mean over that neighbourhood in the calculation
of the between class scattering matrix. Let xl∈s,kNNi ∈r denote the lth of the k nearest
neighbours from class s of pixel i from class r . Then the local (class s) mean is
defined as

ms,kNNi ∈r = 1

k

k∑
l=1

xl∈s,kNNi ∈r (10.22)

in which case the expression for the between class scattering matrix becomes

Sb =p(ωr)E
{
(xi∈r − ms,kNNi ∈r )(xi∈r − ms,kNNi ∈r )

t |ωr

}
+p(ωs)E

{
(xj∈s − mr,NNj ∈s)(xj∈s − mr,NNj ∈s)

t |ωs

}
(10.23)
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class r

ba
nd
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band 1

class t

class s

xi∈r

... .
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. .

. ...

x

x

ms,kNNi∈r

m t,kNNi∈r

k nearest neighbours in class s to xi∈r

Fig. 10.12. The k nearest neighbours of the ith pixel from class r in each of two other classes.

Note from (10.22) that if k, the size of the neighbourhood, is the same as the total
number of training pixels available in class s then the “local” mean becomes the
class mean, and the between-class scatter matrices do indeed look like covariance
matrices, although taken around the mean of the opposite class rather than the mean
of their own class.

Generalisation of (10.23) requires a little thought because there are as many
weighted means of the pixels “from the other class” as there are “other classes.” This
is illustrated in Fig. 10.12 for the case of three classes: r , s and t . It is therefore easier
to express the expectations in (10.23) in algebraic form so that for C total classes

Sb =
C∑

r=1

p(ωr)

C∑
c=1,c 	=r

1

Nr

Nr∑
i=1

(xi∈r − mc,kNNi ∈r )(xi∈r − mc,kNNi ∈r )
t

(10.24)

in which the inner sum computes the expected scatter between the Nr training pixels
from class r and the mean of the nearest neighbours in class c (different for each
training pixel), the middle sum then changes the class (c), still relating to the training
pixels from class r , and the outer sum changes the class (r) for which the training
pixels are being considered; the latter computation is weighted by the prior probability
for the class.

Having determined a non-parametric expression for among-class scatter we now
need to consider the within-class scatter properties, in order to be able to use a crite-
rion such as that in (10.19) to guide feature reduction. Fukunaga suggests using the
usual form of the within-class scatter matrix (10.11), although with a data transfor-
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mation that maps it to the identity matrix. Based on this assumption he shows that
the NDA transformation that ranks the transformed features by decreasing value in
separability is

z = �t�−1/2Φtx

where � is the matrix of eigenvectors of Sb, and � is the diagonal eigenvalue matrix
and Φ is the eigenvector matrix of the within-class scatter matrix.

An alternative non-parametric expression for the within-class scatter has been
proposed by Kuo and Landgrebe (2004), based on the local neighbourhood concept
above in which the mean of the k neighbours from class r of the ith pixel also from
class r is

mr,kNNi ∈r = 1

k

k∑
l=1,l 	=i

xl∈r,kNNi ∈r

so that the within-class scatter matrix in the two class case is

Sw =p(ωr)E
{
(xi∈r − mr,kNNi ∈r )(xi∈r − mr,kNNi ∈r )

t |ωr

}
+p(ωs)E

{
(xj∈s − ms,kNNj ∈s)(xj∈s − ms,kNNj ∈s)

t |ωs

}
.

The procedures of Sect. 10.4.3 can then be used to find the required transformation.
It is clear that this process might lead to a better outcome if only those training

pixels in the vicinity of the decision boundaries were used in the computation of the
scatter matrices.Accordingly, the calculations can be weighted to lessen the influence
of neighbours further away from each other.

There are several limitations with the NDA approach, including the need both to
specify the size of the neighbourhoods and the need to identify the neighbours to be
used in each calculation. In contrast, even though canonical analysis is parametric in
its basis, the computational demand is relatively straightforward.

Another feature reduction procedure that uses training pixels only in the vicinity
of the decision boundary is Decision Boundary Feature Extraction (DBFE), sum-
marised by Landgrebe (2003).

Briefly, it is based on the notion that (transformed) feature vectors normal to
decision boundaries are discriminantly informative, whereas feature vectors that lie
parallel to a decision boundary do not aid in class separation. Figure 10.13 illustrates
this point with a two dimensional, two class example. The problem, therefore, is to
find an effective representation of the normals to the portion of the decision boundary
that is used in discrimination (even though a decision boundary may be infinite in
extent theoretically, in practice only that portion in the vicinity of the training data
is significant).

DBFE is a parametric procedure. It commences by estimating the class condi-
tional means and covariance matrices, which are used to define the actual decision
surface and then to classify the training pixels. Outlying pixels from each class are
then removed using a Chi-squared test (see Sect. 8.2.5), and a sample of each class
in the vicinity of the decision surface is selected by applying the Chi-squared test to
the pixels of the opposite class, using the statistics of the first class.
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Fig. 10.13. Transformed axes in which one of the new features is of value in separating the
classes shown. The other feature, being parallel to a likely decision boundary or separating
surface does not assist in discrimination.

From the sample identified, the decision surface normals are estimated in the
vicinity of the training data, from which an effective decision boundary feature
matrix is computed. While the dimensionality of the matrix will be the same as the
original feature space, its rank may be smaller, indicating the (reduced) number of
discriminantly informative features.

DBFE has a number of drawbacks, including, again, the large number of calcula-
tions required and the need to obtain reliable estimates of the original class signatures
and the decision boundary feature matrix. Those parameter estimates are not reliable
if the dimensionality is high and the number of training samples (especially in the
vicinity of the decision surface) is limited.

10.4.5
Non-parametric Weighted Feature Extraction (NWFE)

NWFE is a variation on the weighted version of DAFE above. It weights the samples
used in the calculations of the local means and uses slightly different definitions of
the among-class and within-class scattering matrices.

First, consider the calculation of a local mean for class r pixels in the vicinity
of pixel i from that same class. Rather than using a set of k nearest neighbours, all
the training pixels are used, but their influence on the computed value of the mean
is diminished the further they are from xi∈r . Thus the weighted r class mean about
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the ith pixel from class r is

mr,i∈r =
Nr∑
l=1

wl∈r,i∈rxl∈r

where Nr is the number of training pixels in class r , and the weight wl∈r,i∈r is de-
fined by

wl∈r,i∈r = d−1(xi∈r , xl∈r )

Nr∑
l=1

d−1(xi∈r , xl∈r )

in which d−1 is the inverse of the distance between the pixel vectors in its argument.
In a similar manner, the “local” mean of the class s pixels as far as the ith pixel from
class r , xi∈r , is concerned is

ms,i∈r =
Ns∑
l=1

wl∈s,i∈rxl∈s

where the weight now is

wl∈s,i∈r = d−1(xi∈r , xl∈s)

Ns∑
l=1

d−1(xi∈r , xl∈s)

Using these new definitions of the means, the among class and within class scatter
matrices are now computed, for the multiclass case, as

Sb =
C∑

r=1

p(ωr)

C∑
c=1,c 	=r

1

Nr

Nr∑
i=1

wi∈r,c(xi∈r − mc,i∈r )(xi∈r − mc,i∈r )
t

(10.25a)

Sw =
C∑

r=1

p(ωr)
1

Nr

Nr∑
i=1

wi∈r,r (xi∈r − mr,i∈r )(xi∈r − mr,i∈r )
t

(10.25b)

where the weights are defined by

wi∈r,ξ = d−1(xi∈r , mξ,i∈r )

Nr∑
l=1

d−1(xi∈r , mξ,i∈r )

with ξ = c or r , in (10.25a) and (10.25b) respectively.
To avoid problems with reliable estimation, or even singularity, the within-

class scatter matrix of (10.25b) is sometimes replaced by an approximate form (see
Sect. 13.7). In particular, Kuo and Landgrebe (2004) use

S′
w = 0.5Sw + 0.5 diag Sw
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Having established the form of the among-class and within-class scatter matrices,
the required features can be found by using the eigenvectors corresponding to the
largest eigenvalues of

J = Σ−1
w,yΣA,y

With the newly defined scatter matrices, the use of this criterion for finding the
transformation that gives best separability is tantamount to using (10.17).

10.4.6
Arithmetic Transformations

Depending upon the application, feature reduction prior to classification can some-
times be carried out using simpler arithmetic operations than the transformations
treated in the foregoing sections. As an illustration, taking the differences of multi-
spectral imagery from different dates can yield difference data that can be processed
for change, by comparison with the need to classify all the data if the preprocessing
step is not adopted.

A second example is the use of the simple ratio of infrared to visible data as a
vegetation index. This allows vegetation classification to be performed on the ratio
data alone. More sophisticated vegetation indices exist and these can be considered as
data reduction transformations. The most commonly encountered are the following
in which the bands designated are those from the multispectral scanners on Land-
sats 1–3. The band numbers need to be redefined to refer to Landsats 4 onwards, and
other sensors.

VI = (band 7 − band 5)/(band 7 + band 5) (vegetation index)

TVI = √
VI + 0.5 (transformed vegetation index)

These and others are discussed in Myers (1983).

References for Chapter 10

For more mathematical details on measures of divergence and Jeffries-Matusita distance the
reader is referred to Duda, Hart and Stork (2001) and Kailath (1967). A detailed discussion
on transformed divergence will be found in Swain and King (1973).

A good introductory discussion on canonical analysis in remote sensing is given in the
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on two and three dimensional data sets.
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Problems

10.1 Kailath (1967) shows that the probability of making an error in labelling a pattern as
belonging to one of two classes with equal prior probabilities is bounded according to

1

16
(2 − Jij )2 ≤ PE ≤ 1

4
(2 − Jij )

where Jij is the Jeffries-Matusita distance between the classes. Determine and plot the upper
and lower bounds on classification accuracy for a two class problem, as a function of Jij . You
may wish to compare this to an empirical relationship between classification accuracy and Jij

found by Swain and King (1973).

10.2 Consider the training data given in problem 8.1. Suppose it is required to use only one
feature to characterise each spectral class. By computing pairwise transformed divergence
measures ascertain the best feature to retain if:
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(a) only classes 1 and 2 are to be considered
(b) only classes 2 and 3 are to be considered
(c) all three classes are to be considered.
In each case estimate the maximum possible classification accuracy.

10.3 Using the same data as in problem 10.2, perform feature reductions if possible using
principal component transformations if the covariance matrix is generated using
(a) only classes 1 and 2
(b) only classes 2 and 3
(c) all three classes.

10.4 Using the same data as in problem 10.2, compute a canonical analysis transformation
for all three classes of data and see whether the classes have better discrimination in the
transformed axes.

10.5 Suppose the mean vectors and covariance matrices have been determined, using training
data, for a particular image of an agricultural region. Because of the nature of the land use,
the region consists predominantly of fields that are large compared with the effective ground
dimensions of a pixel, and within each field there is a degree of similarity among the pixels,
owing to its use for a single crop type.

Suppose you delineate a field from the rest of the image (either manually or automatically)
and then compute the mean vector and covariance matrix for all the pixels in that field. Describe
how pairwise divergence, or Jeffries-Matusita distance could be used to classify the complete
field of pixels into one of the training classes.

10.6 The application of rotational transforms such as principal components and canonical
analysis cannot improve intrinsic separability – i.e. the separability possible in the original
data with all dimensions retained. Why?

10.7 The principal components transformation can be used for feature selection. What advan-
tages and disadvantages does it have compared with canonical analysis?

10.8 Two classes have the statistics:

m1 =
[

10
20

]
Σ1 =

[
1 0
0 1

]

m2 =
[

10
20

]
Σ2 =

[
5 0
0 5

]

(a) Can a minimum distance classifier work for this data?
(b) Calculate the JM distance between the classes. Are they separable?
(c) Assuming equal prior probabilities, classify the pixel vector x = [12 30]t .
10.9 Both training and testing data are required for developing a Gaussian maximum likeli-
hood classification. What reason might there be for low classification accuracy on the training
data? If the classification accuracy is high on the training data but low on the testing data,
what could be the reason?
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Image Classification Methodologies

11.1
Introduction

In principle, classification of multispectral image data should be straightforward.
However to achieve results of acceptable accuracy care is required first in choosing the
analytical tools to be used and then in applying them. In the following the classical an-
alytical procedures of supervised and unsupervised classification are examined from
an operational point of view, with their strengths and weaknesses highlighted. These
approaches are often acceptable; however more often a judicious combination of the
two will be necessary to attain optimal results. A hybrid supervised/unsupervised
strategy is therefore also presented.

Other compound classification approaches are also possible including the hier-
archical decision tree methods covered in Sect. 11.8.

11.2
Supervised Classification

11.2.1
Outline

As discussed in Chap. 8 the underlying requirement of supervised classification tech-
niques is that the analyst has available sufficient known pixels for each class of interest
that representative signatures can be developed for those classes. These prototype
pixels are often referred to as training data, and collections of them, identified in an
image and used to generate class signatures, are called training fields. The step of
determining class signatures is frequently called training.

Particular care needs to be taken when attempting to generate signatures for hy-
perspectral data sets. As a result, procedures for classifying hyperspectral image data
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are treated separately in Chap. 13. Nevertheless, it is possible to condition hyper-
spectral data (for example, through feature selection) so that the material outlined
here is still relevant.

Signatures generated from the training data will be of a different form depending
on the classifier type to be used. For parallelepiped classification the class signatures
will be the upper and lower bounds of brightness in each spectral band. For minimum
distance classification the signatures will be the mean vectors of the training data for
each class, while for maximum likelihood classification both class mean vectors and
covariance matrices constitute the signatures. For neural network and support sector
machine classifiers the collection of weights define the boundaries between classes.
While they do not represent class signatures as such they are the inherent properties
of the classifier, learnt from training data, that allow classes to be discriminated.

By having the labelled training data available beforehand, from which the sig-
natures are estimated, the analyst is, in a relative sense, teaching the classification
algorithm to recognise the spectral characteristics of each class, thereby leading to
the term supervised as a qualification relating to the algorithm’s learning about the
data with which it has to work.

As a proportion of the full image to be analysed the amount of training data would
represent less than 1% to 5% of the pixels. The learning phase therefore, in which
the analyst plays an important part in the a priori labelling of pixels, is performed
on a very small part of the image. Once trained, the classifier is then asked to attach
labels to all the image pixels by using the class estimates provided to it.

The steps in this fundamental outline are now examined in more detail, noting
the practical issues that should be considered to achieve reliable results.

11.2.2
Determination of Training Data

The major step in straightforward supervised classification is the prior identification
of training pixels. This may involve the expensive enterprise of field visits, or may
require use of reference data such as topographic maps and air photographs. In the
latter, a skilled photointerpreter may be required to determine the training data. Once
training fields are suitably chosen they have to be related to the pixel addresses in
the satellite imagery. Sometimes training data can be chosen by photointerpretation
from image products formed from the multispectral data to be classified. Generally
however this is restricted to major cover types and again can require a great deal of
photointerpretive skill if more than a simple segmentation of the image is required.

Some image processing systems have digitizing tables that allow map data –
such as polygons of training pixels, i.e. training fields – to be taken from maps and
superimposed over the image data. While this requires a registration of the map
and image, using the procedures of Sect. 2.4, it represents an unbiased method for
choosing the training data. It is important however, as with all training procedures
based upon field or reference data, that the training data be recorded at about the
same time as the multispectral data to be classified. Otherwise errors resulting from
temporal variations may arise.
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It is necessary to identify training data at least for all classes of interest and prefer-
ably for all apparent classes in the segment of image to be analysed. In either case,
and particularly if the selection of training data is not exhaustive or representative, it
is prudent to use some form of threshold or limit if the classification is of the mini-
mum distance or maximum likelihood variety; this will ensure poorly characterised
pixels are not erroneously labelled. Limits in minimum distance classification can be
imposed by only allowing a pixel to be classified if it is within a prespecified number
of standard deviations of the nearest mean. For maximum likelihood classification a
limit may be applied by the use of thresholds on the discriminant functions. Having
so limited a classification, pixels in the image which are not well represented in the
training data will not be classified. This will identify weaknesses in the selection of
the training sets which can then be rectified and the image re-classified. Repeated
refinement of the training data and reclassification in this manner can be carried out
using a representative portion of the image data.

11.2.3
Feature Selection

The cost of the classification of a full image segment is reduced if bands or features
that do not aid discrimination significantly are removed. After training is complete
feature selection can be carried out using the separability measures presented in
Chap. 10. The recommended measures are transformed divergence, if maximum
likelihood signatures have been generated, or Euclidean distance if the signatures
have been prepared for minimum distance classification.

Separability measures can also be used to assess whether any pair of classes are
so similar in multispectral space that significant misclassification will occur if they
are both used. Should such a pair be found the analyst should give consideration to
merging them to form a single class.

If hyperspectral data is being considered feature selection can be a crucial step.
Yet, unfortunately, many separability measures used to effect feature selection are
themselves dependent on class covariance matrices. The material in Sect. 13.7 is then
particularly relevant.

11.2.4
Detecting Multimodal Distributions

The most common algorithm for supervised classification is that based upon max-
imum likelihood estimation of class membership of an unknown pixel using mul-
tivariate normal distribution models for the classes. Its attraction lies in its ability
to model class distributions that are elongated to different extents in different direc-
tions in multispectral space and its consequent theoretical guarantee that, if properly
applied, it will lead to minimum average classification error. However, its major
limitation in this regard is that the classes must be representable as multivariate nor-
mal distributions. Often the information classes of interest will not appear as single
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distributions but rather are best resolved into a set of constituent spectral classes or
sub-classes. Should these spectral classes not be properly identified beforehand, the
accuracy of supervised maximum likelihood classification will suffer. Multimodal
classes can be identified to an extent using clustering algorithms; indeed this is the
basis of the hybrid classification methodology developed in Sect. 11.4 below. A sim-
ple, yet rather more limited means, by which multimodal behaviour can be assessed
is to examine scatterplots of the data in each training class. A scatterplot is a two
dimensional multispectral space with user defined axes. An infrared versus visible
red scatterplot for “vegetation” prototype pixels could show, for example, two dis-
tinct regions of data concentration, corresponding to sub-classes of “grassland” and
“trees”.

Should any of the sets of training data be found to be multimodal, steps should
be taken to resolve them into the appropriate sub-classes in order to minimise classi-
fication error. Again clustering of the training sets could be used to do this, although
it is frequently straightforward to identify groups of image pixels corresponding to
each of the data modes in a scatterplot, thereby allowing the analyst to subdivide the
corresponding training fields.

11.2.5
Presentation of Results

Two types of output are available from a classification. One is the thematic (or class)
map in which pixels are given a label (represented by a colour or symbol) to identify
them with a class. The other output is a table that summarises the number of pixels in
the image found to belong to each class. The table can be interpreted also as a table
of areas, in hectares. However that requires either that the user has resampled the
image data to a map grid beforehand, so that the pixels correspond to an actual area
on the ground, or that the user takes account of any systematic pixel overlap such as
the 23 m overlap of Landsat MSS pixels caused by the detector sampling strategy
(see Appendix A). In that case it is important to recall that the effective MSS pixel is
56 m × 79 m and thus represents an area of 0.4424 ha for Landsats 1 to 3.

11.2.6
Effect of Resampling on Classification

The utility of remote sensing image data is improved if it is registered to a map
base. As discussed in Sect. 2.4.1.3 several interpolation techniques can be used to
synthesise pixel values on the map grid, the most common being nearest neighbour
resampling and resampling by cubic convolution. In the former, original image pixels
are simply relocated onto a geometrically correct map grid whereas in the latter new
pixel brightness values are synthesised by interpolating over a group of sixteen pixels.

Usually it is desirable to have the thematic maps produced by classification
registered to a map base. This can be done either by rectifying the image before clas-
sification or by rectifying the actual thematic map (in which case nearest neighbour
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resampling is the only option). An advantage in correcting the image beforehand
is that it is often easier to relate reference data and ground truth information to the
image if it is in correct geometric registration to a map. However a drawback with
doing this from a data analysis/information extraction point of view is that the data
is then processed before classification is attempted. That preprocessing could add
noise and uncertainty to the pixel brightness values and therefore prejudice subse-
quent classification accuracy. Accordingly, a good rule wherever possible is not to
correct the data before classification. Should it be necessary to rectify the data then
nearest neighbour interpolation should be used in the resampling stage if possible.

The influence of resampling on classification has been addressed by Billingsley
(1982), Verdin (1983) and Forster and Trinder (1984) who show examples of how
cubic convolution interpolation can have a major influence across boundaries such
as that between vegetation and water, leading to uncertainties in classification.

When images in a multitemporal sequence have to be classified to extract change
information it is necessary to perform image to image registration (which could alter-
natively consist of registering all the images to a reference map). Since registration
cannot be avoided in this case, nearest neighbour resampling should be used.

11.3
Unsupervised Classification

11.3.1
Outline, and Comparison with Supervised Methods

Unsupervised classification is an analytical procedure based on clustering, using
algorithms such as those described in Chap. 9. Application of clustering partitions
the image data in multispectral space into a number of spectral classes, and then
labels all pixels of interest as belonging to one of those spectral classes, although the
labels are purely symbolic (e.g. A, B, C, . . . , or class 1, class 2, . . . ) and are as yet
unrelated to ground cover types. Hopefully the classes will be unimodal; however,
if simple unsupervised classification is of interest, this is not essential.

Following segmentation of the multispectral space by clustering, the clusters or
spectral classes are associated with information classes – i.e. ground cover types –
by the analyst. This a posteriori identification may need to be performed explicitly
only for classes of interest. The other classes will have been used by the algorithm to
ensure good discrimination but will remain labelled only by arbitrary symbols rather
than by class names.

The identification of classes of interest against reference data is often more easily
carried out when the spatial distribution of spectrally similar pixels has been estab-
lished in the image data. This is an advantage of unsupervised classification and
the technique is therefore a convenient means by which to generate signatures for
spatially elongated classes such as rivers and roads.

In contrast to the a priori use of analyst-provided information in supervised classi-
fication, unsupervised classification is a segmentation of the data space in the absence
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of any information provided by the analyst.Analyst information is used only to attach
information class (or ground cover type, or map) labels to the segments established
by clustering. Clearly this is an advantage of the approach. However it is a time-
consuming procedure computationally by comparison to techniques for supervised
classification. This can be demonstrated by comparing, for example, multiplication
requirements of the iterative clustering algorithm of Sect. 9.3 with the maximum
likelihood classification decision rule of Sect. 8.2.3.

Suppose a particular classification exercise involves N spectral bands and C

classes. Maximum likelihood classification requires CPN(N + 1) multiplications
where P is the number of pixels in the image segment of interest. By comparison,
clustering of the data requires PCI distance measures for I iterations. Each distance
calculation demands N multiplications1, so that the total number of multiplications
for clustering is PCIN . Thus the speed comparison of the two approaches is approx-
imately (N + 1)/I for maximum likelihood classification compared with clustering.
For Landsat MSS data, therefore, in a situation where all 4 spectral bands are used,
clustering would have to be completed within 5 iterations to be speed competitive
with maximum likelihood classification. Frequently 20 times this number of itera-
tions is necessary to achieve an acceptable clustering. Training the classifier would
add about a 10% loading to its time demand; however a significant time loading
should also be added to clustering to account for the labelling phase. Often this is
done by associating pixels with the nearest (Euclidean distance) cluster. However,
sometimes Mahalanobis or maximum likelihood distance labelling is used. This adds
substantially to the cost of clustering.

Because of the time demand of clustering algorithms, unsupervised classification
is often carried out with small image sequents. Alternatively a representative subset
of data is used in the actual clustering phase in order to cluster or segment the
multispectral space. That information is then used to assign all the image pixels to a
cluster.

When comparing the time requirements of supervised and unsupervised classi-
fication it must be recalled that a large demand on user time is required in training
a supervised procedure. This is necessary both for determining training data and
then identifying training pixels by reference to that data. The corresponding step in
unsupervised classification is the a posteriori labelling of clusters. While this still
requires user effort in determining labelled prototype data, not as much may be re-
quired. As noted earlier, data is only required for those classes of interest; moreover
only a handful of labelled pixels is necessary to identify a class. By comparison, suf-
ficient training pixels per class are required in supervised training to ensure reliable
estimates of class signatures are generated.

A final point that must be taken into account when contemplating unsupervised
classification via clustering is that there is no facility for including prior probabilities
of class membership. By comparison the decision functions for maximum likelihood
classification can be biased by previous knowledge or estimates of class membership.

1 Usually distance squared is calculated avoiding the need to evaluate the square root oper-
ation in (9.1).
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11.3.2
Feature Selection

Most clustering procedures used for unsupervised classification in remote sensing
generate the mean vector and covariance matrix for each cluster found. Accordingly
separability measures can be used to assess whether feature reduction is necessary or
whether some clusters are sufficiently similar spectrally that they should be merged.
These are only considerations of course if the clustering is generated on a sample
of data, with a second phase used to allocate all image pixels to a cluster. Feature
selection would be performed between the two phases.

11.4
A Hybrid Supervised/Unsupervised Methodology

11.4.1
The Essential Steps

The strength of supervised classification based on the maximum likelihood procedure
is that it minimises classification error for classes that are distributed in a multivariate
normal fashion. Moreover, it can label data relatively quickly. Its major drawback lies
in the need to have delineated unimodal spectral classes beforehand. This, however,
is a task that can be handled using clustering, using a representative subset of image
data. Used for this task, unsupervised classification performs the valuable function of
identifying the existence of all spectral classes, yet it is not expected to perform the
entire classification. Consequently, the rather logical hybrid classification procedure
outlined below can be envisaged. This is due to Fleming et al. (1975).

Step 1: Use Clustering to determine the spectral classes into which the image re-
solves. For reasons of economy this is performed on a representative subset
of data. Spectral class statistics are also produced from this unsupervised
step.

Step 2: Using available ground truth or other reference data associate the spectral
classes (or clusters) with information classes (ground cover types). Fre-
quently, there will be more than one spectral class for each information
class.

Step 3: Perform a feature selection evaluation to see whether all features (bands)
need to be retained for reliable classification.

Step 4: Using the maximum likelihood algorithm, classify the entire image into the
set of spectral classes.

Step 5: Label each pixel in the classification by the ground cover type associated
with each spectral class.

It is now instructive to consider some of these steps in detail and thereby introduce
some useful practical concepts. The method depends for its accuracy (as do all
classifications) upon the skills and experience of the analyst. Consequently, it is
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not unusual in practice to iterate over sets of steps as experience is gained with the
particular problem at hand.

11.4.2
Choice of the Clustering Regions

Clustering is employed in Step 1 above to determine the spectral classes, using a sub-
set of the image data. It is recommended that about 3 to 6 small regions, or so-called
candidate clustering areas, be chosen for this purpose. These should be well spaced
over the image and located such that each one contains several of the cover types
(information classes) of interest and such that all cover types are represented in the
collection of clustering areas. An advantage in choosing heterogeneous regions to
cluster, as against apparently homogeneous training areas used in supervised classifi-
cation, is that mixture pixels lying on class boundaries will be identified as legitimate
spectral classes.

If an iterative clustering procedure is used, the analyst will have to prespecify the
number of clusters expected in each candidate area. Experience has shown that, on
the average, there are about 2 to 3 spectral classes per information class. This number
should be chosen, with a view to removing or rationalising unnecessary clusters at a
later stage.

It is of value to cluster each region separately as this saves computation, and
produces cluster maps within those areas with more distinct class boundaries than
would be the case if all regions were pooled beforehand.

11.4.3
Rationalisation of the Number of Spectral Classes

When clustering is complete the spectral classes are then associated with information
classes using available reference data. It is then necessary to see whether any spectral
classes or clusters can be discarded, or more importantly, whether sets of clusters
can be merged, thereby reducing their number and leading ultimately to a faster
classification. Decisions about merging can be made on the basis of separability
measures, such as those treated in Chap. 10.

During this rationalisation procedure it is useful to be able to visualise the lo-
cations of the spectral classes. For this a bispectral plot can be constructed. The
bispectral plot is not unlike a two dimensional scatter plot view of the multispectral
space in which the data appears. However, rather than having the individual pixels
shown, the class or cluster means are located according to their spectral components.
In some exercises the most significant pair of spectral bands would be chosen in
order to view the relative locations of the cluster centres. These could be infrared
and red bands for a vegetation study. Sometimes averages over several bands may be
useful for one of the axes. In general, the choice of bands and combinations to use
in a bi-spectral plot will depend on the sensor and application. Sometimes several
plots with different bands will give a fuller appreciation of the distribution of classes
in multispectral space.
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11.5
Assessment of Classification Accuracy

11.5.1
Using a Testing Set of Pixels

At the completion of a classification exercise it is necessary to assess the accuracy
of the results obtained. This will allow a degree of confidence to be attached to the
results and will serve to indicate whether the analysis objectives have been achieved.

Accuracy is determined empirically, by selecting a sample (desirably an inde-
pendent random sample) of pixels from the thematic map and checking their labels
against classes determined from reference data (desirably gathered during site visits).
Often reference data is referred to as ground truth, and the pixels selected for accu-
racy checking are called testing pixels. From these checks the percentage of pixels
from each class in the image labelled correctly by the classifier can be estimated,
along with the proportions of pixels from each class erroneously labelled into every
other class. These results are then expressed in tabular form, often referred to as a
confusion or error matrix, of the type illustrated in Table 11.1. The values listed in
the table represent the number of ground truth pixels, in each case, correctly and in-
correctly labelled by the classifier. It is common to average the percentage of correct
classifications and regard this the overall classification accuracy (in this case 83%),
although a better measure globally would be to weight the average according to the
areas of the classes in the map.

Sometimes a distinction is made between errors of omission and errors of com-
mission, particularly when only a small number of cover types is of interest, such as
in the estimation of the area of a single crop in agricultural applications. Errors of
omission correspond to those pixels belonging to the class of interest that the classi-
fier has failed to recognise whereas errors of commission are those that correspond
to pixels from other classes that the classifier has labelled as belonging to the class
of interest. The former refer to columns of the confusion matrix, whereas the latter
refer to rows.

When interpreting an error matrix of the type shown in Table 11.1 from the point
of view of a particular class, it is important to understand that different indications

Table 11.1. Illustration of a confusion matrix used in assessing the accuracy of a classification



304 11 Image Classification Methodologies

of class accuracies will result according to whether the number of correct pixels
for a class is divided by the total number of reference (ground truth) pixels for the
class (the corresponding column sum in Table 11.1) or the total number of pixels
the classifier attributes to the class (the row sum in Table 11.1). Consider class B in
Table 11.1, for example. As noted, 37 of the reference data pixels have been correctly
labelled. This represents 37/40 ≡ 93% of the ground truth pixels for the class. We
interpret this measure, which Congalton and Green (1999) refer to as the Producer’s
accuracy, as the probability that the classifier has labelled the image pixel as B given
that the actual (ground truth) class is B. As a user of a thematic map produced by a
classifier we are more interested in the probability that the actual class is B given that
the pixel has been labelled B (on the thematic map) by the classifier. This is what
Congalton and Green refer to as the User accuracy, and for this example is 37/50 ≡
74%. Thus only 74% of the pixels labelled B on the thematic map are correct, even
though the classifier coped with 93% of the B class reference data. This distinction
is important and leads one to believe that the User accuracy is the figure that should
most often be adopted.

Some authors prefer to use the kappa coefficient as a measure of map accuracy
(Hudson and Ramm 1987, Congalton and Green 1999). This is defined in terms of
the elements of the error matrix; let these be represented by xij , and suppose the total
number of test pixels (observations) represented in the error matrix is P . Also, let

xi+ =
∑
j

xij (i.e. the sum over all columns for row i)

x+j =
∑

i

xij (i.e. the sum over all rows for column j)

then the kappa estimate is defined by

κ =
P
∑
k

xkk −∑
k

xk+x+k

P 2 −∑
k

xk+x+k

Choice of the sample of pixels for accuracy assessment is an important con-
sideration. Perhaps the simplest strategy for evaluating classifer performance is to
choose a set of testing fields for each class, akin to the training fields used to esti-
mate class signatures. These testing fields are also labelled using available reference
data, presumably at the same time as the training areas. After classification the accu-
racy of the classifer is determined from its performance on the test pixels. Another
approach, with perhaps more statistical significance since it avoids correlated near-
neighbouring pixels, is to choose a random sample of individual pixels across the
thematic map for comparison with reference data. A difficulty that can arise with
random sampling in this manner is that it is area-weighted. That is, large classes tend
to be represented by a larger number of sample points than the smaller classes; indeed
some very small classes may not be represented at all. Assessment of the accuracy
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of labelling small classes will therefore be prejudiced. To avoid this it is necessary to
ensure small classes are represented adequately. An approach that is widely adopted
is stratified random sampling in which the user first of all decides upon a set of strata
into which the image is divided. Random sampling is then carried out within each
stratum. The strata could be any convenient area segmentation of the thematic map,
such as gridcells. However the most appropriate stratification to use is the actual
thematic classes themselves. Consequently, the user should choose a random sample
within each thematic class to assess the classification accuracy of that class.

If one adopts random sampling, stratified by class, the question that must then be
answered is how many test pixels should be chosen within each class to ensure that
the results entered into the confusion matrix of Table 11.1 are an accurate reflection
of the performance of the classifier, and that the percentage correct classification so-
derived is a reliable estimate of the real accuracy of the thematic map. To illustrate
this point, a sample of one pixel from a particular class will suggest an accuracy
of 0% or 100% depending on its match to ground truth. A sample of 100 pixels
will clearly give a more realistic estimate. A number of authors have addressed this
problem, using binomial statistics, in the following manner.

Let the pixels from a particular category in a thematic map be represented by the
random variable x that takes on the value 1 if a pixel is correctly classified and 0
otherwise. Suppose the true map accuracy for that class is θ (which is what we wish
to estimate by sampling). Then the probability of x pixels being correct in a random
sample of n pixels from that class is given by the binomial probability

p(x; n, θ) = nCxθ
x(1 − θ)n−x x = 0, 1, . . . , n . (11.1)

Van Genderen et al. (1978) determine the minimum sample size, by noting that if
the sample is too small there is a finite chance that those pixels selected could all be
labelled correctly (as for example in the extreme situation of one pixel considered
above). If this occurs then a reliable estimate of the map accuracy clearly has not been
obtained. Such a situation is described by x = n in (11.1), giving as the probability
for all n samples being correct

p(n; n, θ) = θn .

Van Genderen et al. have evaluated this expression for a range of θ and n and have
noted that p(n; n, θ) is unacceptably high if it is greater than 0.05 – i.e. if more than
5% of the time there is a chance of selecting a perfect sample from a population in
which the accuracy is actually described by θ . A selection of their results is given
in Table 11.2. In practice, these figures should be exceeded to ensure representative
outcomes are obtained. Van Genderen et al. consider an extension of the results in
Table 11.2 to the case of encountering set levels of error in the sampling, from which
further recommendations are made concerning desirable sample sizes.

Rosenfield et al. (1982) have also determined guidelines for selecting minimum
sample sizes. Their approach is based upon determining the number of samples
required to ensure that the sample mean – i.e. the number of correct classifications
divided by the total number of samples per category – is within 10% of the population
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Table 11.2. Minimum sample size necessary per category (after Van Genderen et al. 1978)

Table 11.3. Minimum sample size necessary per category (after Rosenfield et al. 1982)

mean (i.e. the map accuracy for that category) at a 95% confidence level. Again
this is estimated from binomial statistics, although using the cumulative binomial
distribution. Table 11.3 illustrates the results obtained; while these results agree with
Table 11.2 for a map accuracy of 85% the trends about this point are opposite.

This perhaps is not surprising since the two approaches commence from different
viewpoints. Rosenfield et al. are interested in ensuring that the accuracy indicated
from the samples (i.e. sample mean) is a reasonable (constant) approximation of the
actual map accuracy. In contrast, Van Genderen et al. base their approach on ensuring
that the set of samples is representative. Both have their merits and in practice one
may wish to choose a compromise of between 30 and 60 samples per category.

Once accuracy has been estimated through sampling it is important to place some
confidence on the actual figures derived for each category. In fact it is useful to be
able to express an interval within which the true map accuracy lies (with say 95%
certainty). This interval can be determined from the accuracy estimate for a class
using the expression (Freund, 1992)

p

{
−zα/2 <

x − nθ√
nθ(1 − θ)

< zα/2

}
= 1 − α (11.2)

where x is the number of correctly labelled pixels in a sample of n; θ is the true map
accuracy (which we currently are estimating in the usual way by x/n) and 1 − α

is a confidence limit. If we choose α = 0.05 then the above expression says that
the probability that (x − nθ)/

√
nθ(1 − θ) will be between ±zα/2 is 95%; ±zα/2 are

points on the normal distribution between which 1−α of the population is contained.
For α = 0.05, tables show zα/2 = 1.960. Equation (11.2) is derived from properties
of the normal distribution; however for a large number of samples (typically 30 or
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more) the binomial distribution is adequately represented by a normal model making
(11.2) acceptable. Our interest in (11.2) is seeing what limits it gives on θ . It is shown
readily, at the 95% level of confidence, that the extreme values of θ are given by

x + 1.921 ± 1.960 {x(n − x)/n + 0.960} 1
2

n + 3.842
(11.3)

As an illustration, suppose x = 294, n = 300 for a particular category. Then ordinar-
ily we would use x = x/n = 0.98 as an estimate of θ , the true map accuracy for the
category. Equation (11.3) however shows, with 95% confidence, that our estimate of
θ is bounded by

0.9571 < θ < 0.9908 .

Thus the accuracy of the category in the thematic map is somewhere between 95.7%
and 99.1%.

This approach has been developed by Hord and Brunner (1976) who produced
tables of the upper and lower limits on the map accuracy as a function of sample size
and sample mean (or accuracy) x = x/n.

11.5.2
The Leave One Out Method of Accuracy Assessment – Cross Validation

An interesting accuracy assessment method, which does not depend on developing a
testing set of pixels, is the Leave One Out (LOO) approach. It is based on removing
one of the training set of pixels, training the classifier on the remainder and using the
trained classifier to label the pixel left out. That pixel is replaced and another removed
and the process repeated. This is done for all pixels in the training set. The average
classification accuracy is then determined. Provided the original training pixels are
representative, this method produces an unbiased estimate of classification accuracy
(Landgrebe, 2003).

The Leave One Out method is a special case of cross validation (Duda, Hart and
Stork, 2001) in which the available labelled pixels are divided into k subsets. One
of those subsets is used as the testing data and the remainder aggregated to form the
training set. The process is repeated k times, so that each subset in turn is used as the
testing data and the others for training.

11.6
Case Study 1: Irrigated Area Determination

It is the purpose of this case study to demonstrate a simple classification, carried out
using the hybrid strategy of Sect. 11.4. Rather than being based upon iterative clus-
tering and maximum likelihood classification it makes use of a single pass clustering
algorithm of the type presented in Sect. 9.6 and a minimum distance classifier as
described in Sect. 8.3.
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The problem presented was to use classification of Landsat Multispectral Scanner
image data to assess the hectarage of cotton crops being irrigated by water from the
Darling River in New South Wales. This was to act as a cross check of area estimates
provided by ground personnel of the New South Wales Water Resources Commission
and the New South Wales Department of Agriculture. More details of the study and
the presentation of some alternative classification techniques for this problem will
be found in Moreton and Richards (1984), from which the following sections are
adapted.

11.6.1
Background

Much of the western region of the state of New South Wales in Australia experiences
arid to semi-arid climatic conditions with low average annual rainfalls accompanied
by substantial evapotranspiration. Consequently, a viable crop industry depends to a
large extent upon irrigation from major river systems. Cotton growing in the vicinity
of the township of Bourke is a particular example. With an average annual rainfall
of 360 mm, cotton growing succeeds by making use of irrigation from the nearby
Darling River. This river also provides water for the city of Broken Hill further
downstream and forms part of a major complex river system ultimately that provides
water for the city of Adelaide, the capital of the state of South Australia. The Darling
River itself receives major inflows from seasonal rains in Queensland, and in dry
years can run at very low levels or stop flowing altogether, leading to increased
salination of the water supplies of the cities downstream. Consequently, additional
demands on the river made by irrigation must be carefully controlled. In New South
Wales such control is exercised by the issue of irrigation licenses to farmers. It is
then necessary to monitor their usage of water to ensure licenses are not infringed.
This, of course, is the situation in many parts of the world where extensive irrigation
systems are in use.

The water demand by a particular crop is very closely related to crop area, because
most water taken up by a plant is used in transpiration (Keene and Conley, 1980).
As a result, it is sufficient to monitor crop area under irrigation as an indication of
water used. In this example, classification is used to provide crop area estimates.

11.6.2
The Study Region

A band 7 Landsat Multispectral Scanner image of the region considered in the study,
consisting of 927 lines of 1102 pixels, is shown in Fig. 11.1. This is a portion of
scene number 30704–23201 acquired in February 1980 (Path 99, Row 81). Irrigated
cotton fields are clearly evident as bright fields in the central left and bottom right
regions, as is a further crop in the top right. The township of Bourke is just south of
the Darling River, just right of the center of the image. The white border encloses
a subset of the data, shown enlarged in Fig. 11.2. This smaller region was used for
signature generation.
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Fig. 11.1. Band 7 Landsat MSS image of the region of the investigation, showing irrigated
fields (white). The area enclosed by the white border was used for signature generation.
Reproduced from Photogrammetric Engineering & Remote Sensing. Vol. 50, June 1984

11.6.3
Clustering

Figure 11.2 shows the location of four regions selected for clustering using the
single-pass algorithm. A fifth clustering region was chosen which partially included
the triangular field in the bottom right region of Fig. 11.1. These regions consist
of up to 500 pixels each and were selected so that a number of the irrigated cotton
fields were included, along with a choice of most of the other major ground covers
thought to be present. These include bare ground, lightly wooded regions, such as
trees along the Darling River, apparently non-irrigated (and/or fallow) crop land, and
a light coloured sand or soil.

Each of the regions shown in Fig. 11.2 was clustered separately. With the pa-
rameters entered into the clustering algorithm, each region generated between five
and 11 spectral classes. The centres of the complete set of 34 spectral classes were
then located on a bispectral plot. Sometimes such a plot could be the average of the
visible components of the cluster means (Landsat bands 4 and 5) versus the average
of the infrared components (bands 6 and 7). In this exercise, however, owing to the
well-discriminated nature of the data, a band 5 versus band 7 bispectral plot was used;
moreover, the subsequent classification also made use only of bands 5 and 7. This
reduced the cost of the classification phase; however, the results obtained suggest
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Fig. 11.3. Bispectral plot (band 5 class means versus band 7 class means) showing the orig-
inal 34 cluster centers (spectral classes) generated. Also shown are the class rationalisations
adopted. Original spectral classes within the dotted circles were combined to form a single
class with mean positions indicated. The labels were determined from reference data and
spectral response characteristics. Reproduced from Photogrammetric Engineering & Remote
Sensing, Vol. 50, June 1984

that accuracy was not prejudiced. The band 5 versus band 7 bispectral plot showing
the clustering results is illustrated in Fig. 11.3.

At this stage, it was necessary to rationalize the number of spectral classes and
to associate spectral classes with ground cover types (so-called information classes).
While a sufficient number of spectral classes must be retained to ensure classifi-
cation accuracy, it is important not to have too many, because the number of class
comparisons, and thus the cost of a classification, is directly related to this number.
Because the classifier to be employed was known to be of the minimum distance
variety, which implements linear decision surfaces between classes, spectral classes
were merged into approximately circular groups (provided they were from the same
broad cover type) as shown in Fig. 11.3. In this manner, the number of classes was
reduced to ten. Labels were attached to each of those (as indicated in Fig. 11.3)
by comparing cluster maps to black-and-white and color aerial photography, and to
band 7 imagery. The relative band 5 and band 7 brightness values were also employed
for class recognition; fields under irrigation were evident by their low band 5 values
(30 on a scale of 255, indicating high chlorophyll absorption) accompanied by high
band 7 reflectance (100 to 150, indicating healthy, well-watered vegetation).
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11.6.4
Signature Generation

Signatures for the rationalized spectral classes were generated by averaging the means
of the constituent original set of spectral classes. This was done manually, and is an
acceptable procedure for the classifier used. Minimum distance classification makes
use only of class means in assigning pixels and does not take any account of class
covariance data. On the contrary, maximum likelihood classification incorporates
both class covariance matrices and mean vectors as signatures, and merging of con-
stituent spectral class signatures to obtain those for rationalized classes cannot readily
be done by hand. Rather, a routine that combines class statistics is required.

The rationalized class means are indicated in Fig. 11.3.

11.6.5
Classification and Results

With spectral class signatures determined as above, Fig. 11.1 was checked for crop
fields that indicated use of irrigation. A classification map of the Fig. 11.2 (6,957 ha)
region is shown in Fig. 11.4. Fields under irrigation are clearly discernible by their
shape, as well as by their classification. By retaining several other ground-cover
types as separate information classes (rather than giving them all a common symbol
representing “non-irrigated”), other geometric features of interest are evident. For
example, the Darling River is easily seen, as are some neighbouring fields that are
not irrigated. This was useful for checking the results of the classification against
maps and other reference data.

The results of the classification agreed remarkably well with ground-based data
gathered by field officers of the New South Wales Water Resources Commission
and the New South Wales Department of Agriculture. In particular, for a region of
169651 pixels (75,000 ha) within Fig. 11.1, a measure of 803 ha given by the classifier
as being under irrigation agreed to better than 1% with that given by ground data. This
is well within any experimental error that could be associated with the classification
and with the uncertainty regarding pixel size (in hectares), and is consistent with
accuracies reported by some other investigators (Tinney et al., 1974).

11.6.6
Concluding Remarks

In general, the combined clustering/supervised classification strategy adopted works
well as a means for identifying a reliable set of spectral classes upon which a clas-
sification can be based. The clustering phase, along with a construction such as a
bispectral plot, is a convenient and lucid means by which to determine the structure
of image data in multispectral space; this would especially apply for exercises that
are as readily handled as those described here. The rationalized spectral classes used
in this case correspond not so much to unimodal Gaussian classes normally asso-
ciated with maximum likelihood classification, but rather are a set that match the
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characteristics of the minimum distance classifier employed. This is an important
general principle: the analyst should know the properties and characteristics of the
classifier being used and, from a knowledge of the structure of the image, choose
spectral class descriptions that match the classifier.

11.7
Case Study 2: Multitemporal Monitoring of Bush Fires

This case study demonstrates three digital image processing operations: image-to-
image registration, principal components transformation and unsupervised classifi-
cation. It entails the use of two Landsat multispectral scanner image segments of a
region in the northern suburbs of the city of Sydney, New South Wales. The region
is subject to damage by bush fires, and the images show fire events and revegetation
in the region over a period of twelve months. Full details of the study can be found
in Richards (1984) and Richards and Milne (1983).

11.7.1
Background

The principal components transformation developed in Chap. 6 is a redundancy
reduction technique that generates a new set of variables with which to describe
multispectral remote sensing data. These new variables, or principal components,
are such that the first contains most of the variance in the data, the second contains
the next major portion of variance and so on. Moreover, in these principal compo-
nent axes the data is uncorrelated. Owing to this it has been used as a data transform
to enhance regions of localised change in multitemporal multispectral image data
(Byrne and Crapper 1979; Byrne et al., 1980; Ingebritsen and Lyon 1985; Fung and
Le Drew 1987). This is a direct result of the high correlation that exist between image
data for regions that do not change significantly and the relatively low correlation
associated with regions that change substantially. Provided the major portion of the
variance in a multitemporal image data set is associated with constant cover types,
regions of localised change will be enhanced in the higher components of the set of
images generated by a principal components transformation of the multitemporal,
multispectral data. Since bushfire events will often be localised in image data of the
scale of Landsat multispectral scanner imagery, the principal components transfor-
mation should therefore be of value as a preclassification enhancement (and, as it
transpires, as a feature reduction tool).

11.7.2
Simple Illustration of the Technique

Figure 11.5 shows the spectral reflectance data of healthy vegetation and vegetation
damaged by fire, typical of that in the image data to be used below. As expected,
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Fig. 11.5. Typical spectral reflectance data
of healthy vegetation pixels and fire dam-
aged vegetation pixels. These have been
derived from the actual image data used
below. Reproduced from Remote Sensing
of Environment, Vol. 16, 1984

Fig. 11.6. Hypothetical illustration of a 2 dimensional 2 date Landsat MSS band 7 space,
showing the dispersion of pixels associated with constant cover types and those that change
between dates

the major effect is in the infrared region, corresponding to band 7 of the Landsat
(1–3) MSS. To illustrate the value of principal components in highlighting changes
associated with fire events suppose we consider just band 7 data from two dates.
One date is prior to a fire and the other afterwards. We can construct a two date
scatter diagram as shown in Fig. 11.6. Pixels that correspond to cover types that
remain essentially constant between dates cluster about an elongated area as shown,
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representing water, vegetation and soils. Cover types that change between dates show
as major departures from that general trend. For example pixels that were vegetated in
the first date and burnt in the second lead to the off-diagonal cluster shown. Similarly
pixels that appeared burnt in the first date and revegetated in the second appear as an
off-diagonal cluster in the opposite direction.

Principal components analysis will lead to the axes shown in Fig. 11.6.As seen the
band 7 variations associated with the localised changes project into both component
axes. However the effect is masked in the first component by the large range of
brightnesses associated with the near-constant cover types. By comparison the change
effect in the second component will dominate since the constant cover types will map
to a small range of brightness in the second principal component.

The same general situation occurs when all available bands of image data are
used. However several of the higher order components will reflect local change
information.

11.7.3
The Study Area

In December 1979 the State of New South Wales in Australia experienced a number
of major bushfires. While the majority of these were in mountain ranges to the west
and northwest of the capital, Sydney, one particularly threatening fire occurred in
Sydney’s northern suburbs. Figure 11.7a shows a portion of a Landsat MSS image
in this vicinity acquired on 29 December 1979. The area of bushland damaged by
fire appears dark. The same region almost one year later (14 December 1980) is
shown in Fig. 11.7b. The 1979 fire scar is diminished owing to partial vegetation
recovery. However, two new fire burns are evident, as indicated, resulting from fires
in the intervening period. The pair of images together therefore allow examination
of vegetation to fire burn change and fire burn to revegetation.

11.7.4
Registration

Areas about two to three times larger than those shown in Fig. 11.7 were registered
utilizing approximately 20 control points spaced near the scene circumference with a
few scattered over the scene centre. The actual positions of some control points used
are shown in Fig. 2.17a by comparison to the study area. Cubic polynomial mapping
of the 1980 image to the 1979 image was performed. Resampling was based upon
cubic convolution interpolation since the primary intention of the project was to
examine principal components images by photointerpretation. The resulting average
standard errors for the prediction of control points in the master image from those in
the slave were less than 1/4 pixel spacing in both row and column.
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Fig. 11.7. a Portion of the Landsat MSS band 7 data acquired over Sydney on 29 December
1979. The dark region in the centre is an area burnt out by a fire several days earlier. b The
Landsat MSS band 7 of the region in a but acquired almost 1 year later, on 14 December 1980.
The fire burn is revegetating as evidenced by the developing light regions. Two new fire burns
have occured. These show as dark regions on the north-western and southern regions of the
image segment

11.7.5
Principal Components Transformation

The registered subscenes were added to form an 8-dimensional multitemporal image
data set (in the order 1979 band 4, 1979 band 5 . . . , 1980 band 4, 1980 band 5 . . . ),
from which the set of principal components was generated. Automatic polarization
(inversion of brightnesses) and scaling options were chosen in the transformation
process as these gave component images with better visual dynamic range and it
was felt that they would not prejudice subsequent interpretation at the level of dis-
crimination envisaged (into major cover types and change classes but not into fine
subdivision of vegetation species, etc.).

The first four of the eight principal component images are shown in Fig. 11.8.
The remainder do not display any features of significance to the study. The first
component is tantamount to a total brightness image, whereas the later components
highlight changes. It is the second, third and fourth components that are most striking
in relation to the fire features of interest. Pixels that have essentially the same cover
type in both dates e.g., vegetation and vegetation, fire burn and fire burn, show as
midgrey in the second, third and fourth components. Those that have changed, either
as vegetation to fire burn or as fire burn to vegetation show as darker or brighter
than midgrey, depending upon the component. These effects are easily verified by
substituting typical spectral reflectance characteristics into the equations that gen-
erate the components. Each component is a linear combination of the original eight
bands of data, where the weighting coefficients are the components of the corre-
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Fig. 11.8. The first four principal components of the 8-dimensional data set formed by con-
catenating the four Landsat MSS bands of the region of interest from each date. Components
are numbered as a PC 1; b PC 2; c PC 3; d PC 4. Components 3 and 4 particularly highlight
the fire-related events. Reproduced from Remote Sensing of Environment, Vol. 16, 1984

sponding eigenvector of the 8 × 8 covariance matrix. These eigenvectors along with
their associated eigenvalues (which are the variances of the components) are shown
in Table 11.4. In interpreting the fourth component it is necessary to account for a
polarization inversion introduced in generating the set of principal components.

The second principal component image expresses the 1979 fire burn as lighter
than the average image tone, while the third principal component highlights the two
fire burns. The 1979 burn region shows as darker than average whereas that for 1980
shows as slightly lighter than average. In the fourth component the 1980 fire burn
shows as darker than average with the 1979 scar not evident. What can be seen,
however, is revegetation in 1980 from the 1979 fire. This shows as lighter regions. A
particular example is revegetation in two stream beds on the right-hand side of the
image a little over halfway down.

A colour-composite image formed by displaying the second principal component
as red, the third as green, and the fourth as blue is shown in Fig. 11.9. This shows
the area that was vegetated in 1979 but burned in 1980 as lime green; the regions
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Table 11.4. Eigenvalues (variances) and eigenvectors of the 8-dimensional, original image
data covariance matrix. The eigenvectors are the component weighting coefficients

Fig. 11.9. Colour composite multitemporal image formed by displaying the second principal
component as red, the third principal component as green and the fourth principal component
as blue

from the 1979 burn that remain without vegetation or have only a light vegetation
cover in 1980 show as bright red; revegetated regions in 1980 from the 1979 fire
display as bright blue/purple whereas the vegetated, urban, and water backgrounds
that remained essentially unchanged between dates show as dark green/grey.

11.7.6
Classification of Principal Components Imagery

Because of the change enhancement offered in the principal components it should
be possible to produce a change class thematic map by classification.

An initial unsupervised classification of the first four principal components pro-
duced substantial confusion between water/land and fire burn/vegetation. Owing to
the nature of the first component, this is to be expected. A second test using com-
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Fig. 11.10. Bispectral plot used for developing spectral classes in the classification of the
third and fourth principal components into major fire-related themes. Reproduced from Remote
Sensing of Environment, Vol. 16, 1984

ponents 2, 3, and 4 was acceptable, although some of the richly revegetated regions
were unclassified. Consequently, it was decided to use just components 3 and 4 in
the classification since a visual inspection indicates that they contain most of the
class/change class information required.

The six major cover types were roadways, water, 1979 to 1980 fire burn, 1979
to 1980 revegetation, unchanged vegetation, and residual 1979 fire burn. Unchanged
urban regions were not considered since resolution of these from other unchanged
classes such as vegetation and water was not required. Maximum likelihood signa-
tures for the six selected classes were generated. This left a significant proportion
of what could be called “partial revegetation (1979 to 1980)” and “minor residual
1979 fire burn” unclassified. This situation was rectified by adding these two further
classes as shown in the bispectral plot of Fig. 11.10.

The classification map of Fig. 11.11 was obtained using the eight subclasses,
along with a likelihood threshold so chosen to avoid classification of regions for
which signatures were not developed (such as urban). In the map only three major
change classes are displayed, these being minor and major vegetation regeneration
from 1979 to 1980 (the decision was made by inspection of the original standard
colour composite images), the 1980 fire burn, and the residual bare effect from the
1979 fire. The latter is not strictly a change class for the pair of images considered
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Fig. 11.11. Thematic map generated by classification of the third and fourth principal com-
ponents. Only three classes are shown. These are vegetation regeneration (green), the 1980
fire burn (yellow) and the residual bare effect from the 1979 fire (red)

but, nevertheless, was generated easily and is a significant class in the context of the
study of fire damage and vegetation recovery. Notable in this classification is that
there appears to be no confusion between burn and revegetating pixels, and water
edge regions. The reason for this is that the water edge pixels are approximately
constant between dates (to the extent that tides are constant) and thus are correlated.
They will map therefore to the midgrey constant background region of the higher
order principal components, whereas the fire burn pixels (with which they can be
confused) are vegetated in one date and burned in another and thus map to a quite
different range of brightness in transformed imagery. Experience with single scene
classification often shows water edge and fire burn confusion.

11.8
Hierarchical Classification

11.8.1
The Decision Tree Classifier

The classifiers treated in above have all been single stage in that only one decision
is made about a pixel, as a result of which it is labelled as belonging to one of the
available classes or is left unclassified. Multistage classification techniques are also
possible in which a series of decisions is taken in order to determine the correct label
for a pixel. Examples of such an approach are shown in Figs. 8.17 and 8.18. The
more common multistage classifiers are called decision trees, examples of which are
shown in Fig. 11.12. They consist of a number of connected classifiers (or decision
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Fig. 11.12. a A general decision tree. b A binary decision tree with overlapping classes.
c A binary tree without overlapping classes – underlines indicate class overlaps
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Fig. 11.12c.

nodes) none of which is expected to perform the complete segmentation of the image
data set. Instead, each component classifier only performs part of the task, as noted
in the figure. Perhaps the simplest type is the binary tree in which each component
classifier, or node, is expected to perform a segmentation of the data into only one
of two possible classes, or groups of classes.

The advantages of using a multistage or tree approach to classification include
that different data sources, different sets of features, and even different algorithms
can be used at each decision stage. Minimising the number of features to use in a
decision is significant for reducing processing time and for improving the accurcy
of small class training.

11.8.2
Decision Tree Design

Frequently, decision tree strategies can be designed manually, particularly when
they are required to perform quite specific labelling tasks (Swain and Hauska, 1977).
However, as with single stage classifier and neural network training it would be of
value to have automated design procedures available.

There are three tasks in the design of a decision tree: finding the optimal structure
for the tree, choosing the optimal subset of features at each node, and selecting the
decision rule to use at each node. An optimal or suboptimal tree structure may aim
for minimum error rate, a minimum number of nodes, or a minimum path length in
deciding how to split classes at each node of the tree; consideration must be given also
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to means for controlling overlapping classes and for control of how many branches
and layers to use.

Since the number of possible tree structures, even for a moderately small number
of classes, is astronomical, it is very difficult to design an optimal classifier (Mui
and Fu, 1980). Classification accuracy and efficiency, however, rely heavily on the
tree chosen. Therefore, various heuristic methods for decision tree design have been
developed, details of which can be found in Safavian and Landgrebe (1991).

To make the design task easier, binary decision trees are often adopted. Discrim-
ination ability is not necessarily weakened by choosing a binary approach, since
a general decision tree can be uniquely transformed into an equivalent binary tree
(Rounds, 1980).

One method for binary decision tree design is a “bottom up” approach similar
to the agglomerative hierarchical clustering algorithm discussed in Sect. 9.7. If we
replace the pixel data by class mean vectors, the bottom up method can be imple-
mented by that process. Initially, the pairwise class separations are computed using
a suitable distance metric, such as Euclidean distance. The two most similar classes
are merged and a new mean is estimated for this combined data. This is continued
until all the classes lie in a single, large class. The history of mergings provides the
inverse order of classes split in the decision tree.

Figure 11.13 shows the decision tree corresponding to the data given in Fig. 9.7.
(The 9 pixels are treated as 9 class mean vectors.) As seen, the two most separable
groups of classes are processed first, and the most subtle class pair will be dis-
criminated at the bottom of the tree. By so doing, the cumulative error will also be
minimised.

This method assumes that the same set of features and the same classification
algorithm are used at each decision node. A more general design philosophy is
difficult to devise. However, analyst knowledge often helps in structuring a tree. For
example, it is logical to separate data into water and croplands, and then croplands
further into wheat, corn, etc. A user might also be able to use algorithm knowledge
such as that minimum distance classification is preferred when small classes need to
be identified. Moreover, some GIS data, e.g. elevation, can be segmented by a one
dimensional parallelepiped algorithm.

11.8.3
Progressive Two-Class Decision Classifier

Figure 11.14 shows a progressive two-class decision classifier (Jia and Richards,
1998). Suppose there are six classes, represented by ωa, ωb, ωc, ωd, ωe and ωf . The
scheme focuses on one class pair at a time (at a node). The function of the first
layer is to check the potential membership of an unknown pixel vector x to class ωa

and ωb and the vector is classified temporarily as either class ωa or class ωb using
the decision rule, Dab. Class ωb will be rejected for further consideration for those
vectors labelled into the ωa category, and class ωa is rejected for further consideration
for those vectors labelled into the ωb category. At the second layer, there are two
nodes, and two new class pairs (ωa and ωc for the left side node and ωb and ωc for
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Fig. 11.13. The binary decision tree for the data shown in Fig. 9.7

Fig. 11.14. A schematic chart for progressive two-class decision classifier
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the right side node) are considered, respectively. This process continues until a pure
class labelling has been reached at the last layer, which is the final assignment.

Since the class pair considered at each node is clear, one can concentrate on
making decisions on which algorithm and which subset features to use for the par-
ticular class pair. An optimal environment for discriminating individual class pairs
may result and thus maximum separation between them achieved.

As an example of how the progressive two-class decision tree can lead to good
results an AVIRIS image of mixed agriculture and forestry in Northwestern Indiana,
USA recorded in June 1992 was chosen for classification. Water absorption bands,
bands 104 to 108 and 150 to 162, were removed, leaving 202 of the original 220
bands.

The number of bands is too high relative to the available training samples to
generate reliable class statistics. Therefore, a principal components transformation
was applied to the data and the first 40 transformed features, containing 99.93% of
total variance, were retained for the exercise.

Four difficult-to-separate classes were chosen. Since the data was collected in the
early part of the growing season, soybean and corn canopies presented only about
a 5% ground cover (Landgrebe, 1995). These two classes were each divided into
two subcategories depending upon the tillage practice used on a given field: no-till
and clean-till. The no-till fields would have a substantial amount of residue from the
crop of the previous year and the clean-till fields would have a background of soil
only. The separation of these four classes, two species in each of two conditions,
represents a challenging classification problem. The image, and details of these four
classes, are given in Fig. 11.15.

Gaussian maximum likelihood classification was run on the selected pixels. Class
statistics were estimated using the training pixels. The best features were found for
each class pair separation as shown in Table 11.5. It can be seen that the most suitable
(and number of) features to use for one class pair are often not the same as for other
class pairs. When all classes are to be separated in a single step, 9 features gave the
best result of 64.4% on the testing data. In contrast, using a progressive two-class
decision tree an accuracy of 72.5% was obtained.

Table 11.5. The best features found for each class pair and for all classes considered together

Class Pairs No. of Features Selected Best Features Selected

Classes 1 & 2 3 1, 2 & 14

Classes 1 & 3 3 2, 3 & 6

Classes 1 & 4 2 14 & 15

Classes 2 & 3 3 1, 2 & 3

Classes 2 & 4 1 19

Classes 3 & 4 3 2, 14 & 15

All classes together 9 1, 2, 3, 6, 10, 12, 14, 15 & 19
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Class Class Training Number of Testing Number of

Number Name Fields Training Pixels Fields Testing Pixels

1 Corn no-till 11, 13 130 1, 12 144

2 Corn clear-till 4 105 2, 3 75

3 Soybean no-till 6, 10 137 9, 14 189

4 Soybean clear-till 5, 7 121 8 156

Fig. 11.15. The image, training and testing pixels used in the classification exercise

11.8.4
Error Accumulation in a Decision Tree

A single layer classification (for example, maximum likelihood on the complete set
of features to resolve the data into all the information classes in one step) can be
represented by a binary decision tree. When a fixed set of features and decision
rule are used at every node, the binary tree can in fact be shown to be identical to
single layer classification (Mui and Fu, 1980). When optimal or suboptimal features
and the most appropriate decision boundaries are used at each stage, classification
performance might be improved as demonstrated by Swain and Hauska (1977), Iikura
and Yasuoka (1991), Lee and Richards (1985) and Kim and Landgrebe (1991).

However, improved performance is not always achieved. Unfortunately with a
decision tree there will be an accumulation of error, thereby requiring very good
decisions at each node if acceptable classification errors are to be maintained at the
terminal nodes. This can be seen in the following simple analysis for a binary tree.
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Suppose the probability of error for both outcomes at every node of a binary tree
is p. Although this is simplistic it serves to illustrate the problem. For a classification
requiring only a single decision node then the error will be p.

However if two decision nodes are crossed in determining the labelling for a
pixel then the (accumulated) error will be

pE = p + (1 − p)p = 2p − p2 (two decision nodes)

The first term in this expression represents erroneous decisions from the previous
node while the second is the probability of correct classification from the previous
node (1 − p) multiplied by the probability of making an error on those correctly
classified pixels at the second node. For a separation requiring three nodes of decision
the accumulated error, proceeding in the same manner, will be

pE = 2p − p2 + (1 − 2p + p2)p = 3p − 3p2 + p3 (three decision nodes)

Generalising, it can be shown that the error accumulated after N nodes of decision
will be

pE = 1 − (1 − p)N

As an example, if p = 10%, N = 5, the final error will be 59%. Thus, owing to the
effect of error accumulation, it is critical to ensure there is very high classification
accuracy at individual nodes in order to maintain a satisfactory accuracy at the end
of the tree. Hopefully this effect will be obviated to an extent by the fact that the
algorithm and features used at each node may be optimal or near optimal for the
separation to be performed at the node.

A further reason as to why binary tree classifiers do not necessarily improve the
correct recognition rate is that when some classes are merged into a group at a node,
the decision boundaries become less specific in the discrimination between mixtures
of classes (Landeweerd et al., 1983). Kim and Landgrebe (1991) point out that, if
there were no Hughes phenomenon, the single-layer maximum likelihood classifier
would have better performance than any decision tree classifier.

11.9
A Note on Hyperspectral Data Classification

The focus of the classification methodologies treated in this chapter has been on
data sets where the number of spectral bands is not high. When hyperspectral data
needs analysis major difficulties can arise with standard classification procedures if
sufficient training samples are not available to estimate class signatures reliably. To
an extent, the problem can be eased if decision trees are used, so that not all features
are used at each decision node. Generally, however, when the number of bands or
channels is large, either care needs to be taken when using standard parametric
procedures (see Chap. 13) or else quite different analytical approaches need to be
adopted, including the use of expert knowledge of spectroscopic principles (see
Chap. 12).
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Problems

11.1 (a) What is the difference between an information dass and a spectral class?
(b) Four analysts use different quantitative methods for analysing multispectral satellite data.
These are summarised below. Comment on the merits and shortcomings of the four approaches
and indicate which one you think is most effective.
Analyst 1
1. Chooses training data from homogeneous regions for each cover type.
2. Develops statistics for a maximum likelihood classifier.
3. Classifies image.
Analyst 2
1. Performs a clustering of the whole image and attaches labels to each cluster type afterwards.
Analyst 3
1. Chooses several regions within the image, each of which includes more than one cover type.

Clusters each region.
2. Identifies the cluster types.
3. Uses statistics from the clustering process to perform a maximum likelihood classification

of the whole image.
Analyst 4
1. Chooses training fields within apparent homogenous regions for each cover type. Clusters

those regions to identify spectral classes.
2. Uses statistics from the clustering process to perform a maximum likelihood classification

of the whole image.
(c) For the method you have identified in (b) as best, discuss how separability measures could
be included to advantage.

11.2 The spectral classes used with the maximum likelihood decision rule in supervised
classification are assumed to be representable by single multivariate normal probability dis-
tributions. Geometrically, this implies that they will have a hyperellipsoidal distribution in
multispectral space. Do you think clustering by the iterative moving means algorithm will
generate spectral classes of this nature? (See problem 9.2).You may care to extend this discus-
sion by considering how best to generate spectral classes for maximum likelihood, minimum
distance and parallelepiped classification. This concept is discussed in J.A. Richards and D.J.
Kelly, 1984: On the Concept of Spectral Class, Int. J. Remote Sensing, 5, 987–991.

11.3 A maximum likelihood classifier can be developed using training data in the usual way by
estimating class statistics. Describe how a threshold can be used to assist in the determination
of the spectral class structure of the data.

11.4 Spaceborne microwave remote sensing depends necessarily on the use of synthetic
aperture radar (SAR) techniques. SAR images of agricultural regions display a substantial
“speckle” owing to the coherent nature of the radiation employed. Comment on the effect
speckle would have in trying to obtain accurate automated classification of agricultural radar
images.

11.5 This question relates to the effect of resampling on classification. Consider a single line
of infrared image data, such as that corresponding, say, to Landsat 3 band 7 responses over
a region that is vegetation to the left and water to the right. Imagine the vegetation/water
boundary is sharp. Resample your single line of data onto a grid with the same centres as
the original. However use both nearest neighbour and cubic convolution interpolation, the
latter according to (2.11 a) with j ′ = 1. Comment on the results of classifying each of the
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resampled lines of data given that the classifier could have been trained on classes that have
infrared brightnesses between those of vegetation and water.

11.6 Frequently texture is used as an element in the photointerpretation of airphotos or satellite
images. It can be used, for example, in the discrimination of forested and grassy regions. When
dealing with digital data using machine-assisted classificated methods, texture can only be used
if a means for computing the texture in the neighbourhood of a pixel can be determined. A
simplistic measure is the standard deviation of pixel brightnesses in a 3 × 3 neighbourhood
about a pixel. Discuss how this texture measure can be incorporated into standard classification
methods, noting any computational burdens involved.

11.7 Sometimes the spectral domain for a particular sensor and scene does consists of a set
of distinct clusters of data. As an illustration, a Landsat visible red versus near infrared two
dimensional space of an image of a region of just water, sand and mangrove vegetation would
appear to have three groups of pixels. More often than not however, especially for images
of natural vegetated and soil regions, the spectral domain will be very much a continuum,
owing to the different degrees of mixing of the various cover types that can occur in nature.
One is then led to question the distinctness and uniqueness, not only of spectral classes, but
information classes as well for regions such as these. In view of these remarks comment on
the issues involved in the classification of natural regions both in terms of the definition of the
set of information classes to be used and in terms of the training procedures to be employed.

11.8 Manually design a simple decision tree that can be used efficiently with ETM+ data for
classification into deep water, shallow water, green vegetation and soil.

11.9 How effectively can canonical analysis be applied to image data with 200 spectral
channels? Is the principal components transformation a viable alternative feature reduction
procedure in this case?

11.10 Discuss the concept of spectral class in relation to hyperspectral data.
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Multisource, Multisensor Methods

Frequently the need arises to analyse mixed spatial data bases, such as that depicted
in Fig. 1.13. Such data sets could consist of satellite spectral, radar, hyperspectral,
topographic and other point form data, all registered geometrically, as might be found
in a geographic information system.

Labelling pixels by drawing inferences from several available sources of data is
referred to as data fusion or multisource classification.As with the treatment of single
image data sets, analysis of mixed data types can be carried out photointerpretatively
or by using machine analysis.

Sometimes multisource classification is relatively straightforward, particularly if
the different data sources are substantially of the same type and thus can be handled by
the same sorts of photointerpreter knowledge or machine algorithm. In many cases,
though, the problem is complex, especially when the analyst wishes to apply quan-
titative methods to data types that are quite different from each other. Manipulating
satellite multispectral data with labelled map data is an example.

It is the purpose of this chapter to present some of the more common techniques
for addressing the interpretation task quantitatively. Analysis by photointerpretation
is not treated as such, since it depends largely on the analyst’s skills with the range
of data types present. Improving image quality for photointerpretative data fusion,
however, is discussed by Gross and Schott (1997) and van der Meer (1997).

Numerically based quantitative methods are treated first, following which proce-
dures based on evidential theory and expert systems are covered. The benefit of the
latter is that the data sources do not need all to be in numerical form.

Clearly, the data to be analysed must first be registered. If the data has been
retrieved from a geographic information system then that step will already have been
performed. However, if spatial registration has not been carried out then the analyst
will have to undertake that task using the procedures of Chap. 2. A word of caution
is in order: the accuracy with which the interpretation of the mixed data can be
performed will be influenced by the accuracy of the registration process in addition
to the effectiveness of the analytical procedures (such as classification) employed.
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12.1
The Stacked Vector Approach

A straightforward way to classify mixed data is to form extended pixel vectors by
stacking together the individual vectors that describe the various spectral and non-
spectral data. This stacked vector will be of the form

X = [xt
1, x

t
2, . . . x

t
S]t (12.1)

where S is the total number of individual data sources with corresponding data vec-
tors x1 . . . xS , and the superscript “t” denotes a vector transpose operation. The
stacked vector X can, in principle, now be approached using standard classifica-
tion techniques. This presents a number of difficulties if statistical methods such as
maximum likelihood classification are considered. These include the incompatible
statistics of the disparate data types, with some data unable to be represented by
normal class models, and the quadratic cost increase with data dimensionality. Par-
allelepiped classification could be an appropriate algorithm to adopt since it depends
only on the application of thresholds to components of the data vector X.

12.2
Statistical Multisource Methods

12.2.1
Joint Statistical Decision Rules

The single data source decision rule of (8.1) can be restated for multisource data
described by (12.1) as

X ∈ ωi if p(ωi |X) > p(ωj |X) for all j 	= i

As with single source methods we can apply Bayes’ theorem to give

X ∈ ωi if p(X|ωi)p(ωi) > p(X|ωj )p(ωj ) for all j 	= i

To proceed further we need to find or estimate the class conditional joint source prob-
abilities p(X|ωi) = p(x1, . . . xS |ωi). To render that exercise tractable independence
among the data sources is generally assumed so that

p(X|ωi) = p(x1|ωi)p(x2|ωi) . . . p(xS |ωi)

where the p(xk|ωi) are the class conditional distribution functions derived from
each data source individually. They are generally referred to as source specific class
conditional density functions.

It is unlikely that the assumption of independence is valid but it is usually nec-
essary in order to perform multisource statistical classification. With the assumption
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the multisource decision rule can be written

X ∈ ωi

if p(x1|ωi) . . . p(xS |ωi)p(ωi) > p(x1|ωj ) . . . p(xS |ωj )p(ωj )

for all j 	= i

An important consideration with classification from multiple sources of data is
whether each available data source has the same quality as far as the classification is
concerned. Some data sets, for example, could be noisy and thus not contribute as
well to the decision making process as other, well defined data sets. Just as a photoin-
terpreter may qualify their judgement about particular data sets based on their visual
quality when forming an opinion, we need to do that in the quantitative decision
rule. That can be achieved by adding powers to the source specific class conditional
probabilities to give

X ∈ ωi

if p(x1|ωi)
α1 . . . p(xS |ωi)

αS p(ωi) > p(x1|ωj )
α1 . . . p(xS |ωj )

αS p(ωj )

for all j 	= i

where the αs are a set of weighting factors chosen to enhance the influence of some
sources (those most trusted) and to diminish the influence of other (perhaps the most
noisy).

There are several problems with the joint statistical approach, in common with the
stacked vector method of the previous section. First, each source must be able to be
modelled to yield class conditional distribution functions. Secondly, the information
classes must be consistent over the sources – in other words the set of information
classes appropriate to one source (say multispectral) must be the same as those for
the other sources (say radar and hyperspectral). This last requirement is a major
limitation of multisource statistical methods.

12.2.2
Committee Classifiers

Closely related to the concept of handling the data sources independently is the
concept of employing a set of individual classifiers, one operating on each data
source. Sets of classifiers are usually referred to as committees, such as that seen in
Sect. 8.9.3 and as illustrated more generally in Fig. 12.1. Note that it is a feature of
committee classifiers that there is a chairman, whose role it is to consider the outputs
of the individual classifiers and make a decision about the class membership of a
pixel.

There are several logics that the chairman could use in decision making. One is
the majority vote, in which the chairman decides the class most recommended by
the committee members. Another is veto logic in which all the classifiers have to
agree about the class membership of a pixel before the chairman will label the pixel.
Yet another is seniority logic, in which the chairman always consults one particular
classifier first (the most “senior”). If that classifier is able to recommend a class label
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Fig. 12.1. a A committee of three classifiers in which each classifier sees all the data. b A
committee in which each classifier is used to handle one of the data sources. C1 etc. are
classifiers.

for a pixel then the chairman allocates that label. If the first (most senior) classifier is
unable to make a reliable recommendation then the chairman consults the next most
senior classifier, and so on until the pixel can be labelled.

Committee classifiers can be used in two ways. First, all the available data could
be fed to all committee members so that each classifier in a sense handles a stacked
vector, as depicted in Fig. 12.1a. Such an approach can be used also for single source
analysis. The second way of using a committee on multisource data is to use one
committee member per data source as shown in Fig. 12.1b. In this way each classifier
can be optimised for handling one particular data type.

12.2.3
Opinion Pools and Consensus Theoretic Methods

A variation on the committee classifier concept is the use of opinion pools. They de-
pend upon finding the single source posterior probabilities and then combining them
arithmetically or geometrically (logarithmically). The linear opinion pool computes
a group membership function, similar to a joint posterior probability, of the form

f (ωi |X) =
S∑

s=1

αsp(ωi |xs)

in which the αs are a set of weighting constants (which sum to unity) that control
the relative influences of each source in the final value of the group membership
function and thus in the labelling of the pixel. One limitation of this rule – known
generally as a consensus rule – is that one data source tends to dominate the decision
making (Benediktsson et al, 1997). Another acceptable consensus rule that doesn’t
suffer that limitation is the multiplicative version

f (ωi |X) =
S∏

s=1

p(ωi |xs)
αs
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which by taking the logarithm becomes the so-called logarithmic opinion pool con-
sensus rule

log{f (ωi |X)} =
S∑

s=1

αs log{p(ωi |xs)}

Note that if one source posterior probability is zero then f (ωi |X) = 0 and, irrespec-
tive of the recommendations from any of the other sources, the group recommenda-
tion is zero (before the log is taken) for that class-pixel combination. In other words
one very weak source can veto a decision.

In the linear and logarithmic opinion pool rules the weighting coefficients αs

again reflect the confidence we have in the respective data sets.
There may be cases though where one data source is better for some classes than

the others, and likewise a different data source might be better for discriminating
a different set of classes. It is possible therefore to choose values for the αs that
will maximise the probability of a correct classification result in an average sense
(Benediktsson et al, 1997).

12.2.4
Use of Prior Probability

In the decision rule of (8.3) and discriminant function of (8.4) the prior probability
terms tell us the probability with which the class membership of a pixel could be
guessed based upon any information we have about that pixel prior to considering the
available remotely sensed measurements. In its simplest form we assume it represents
the relative abundance of that class in the scene being analysed. However, prior class
membership can be obtained from other sources of information as well. In the case
of the Markov Random Field approach to incorporating spatial context in Sect. 8.8.5,
the prior term is the neighbourhood conditional prior probability.

Strahler (1980) and more recently Bruzzone et al (1997) have used the prior term
in (8.4) to incorporate the effect of another data source – in Strahler’s case to bring
the effect of topography into a multispectral classification of a forested region.

12.2.5
Supervised Label Relaxation

The probabilistic label relaxation scheme in Sect. 8.8.4 can also be used to refine
the results of a classification by bringing in the effect of another data source, while
developing spatial neighbourhood consistency as well. The updating rule in (8.16)
can have another step added to it for this purpose.Although heuristic in development it
has been seen to perform well when embedding topographic data into a classification
(Richards, Landgrebe and Swain, 1982).
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Known as supervised relaxation, the updating rule at the kth iteration for class
ωi on pixel m is

pk+1
m (ωi)

∗ = pk
m(ωi)Q

k
m(ωi) for embedding spatial context

pk+1
m (ωi) = pk+1

m (ωi)
∗φm(ωi) for incorporating another data source

followed by application of (8.16), in which the denominator is a normalising factor.
The term φm(ωi) is the probability that ωi is the correct class for pixel m as far as
another data source is concerned.

12.3
The Theory of Evidence

A restriction with the previous methods for handling multisource data is that all
the data must be in numerical form. Yet many of the data types encountered in a
spatial data base are inherently non-numerical. The mathematical Theory of Evidence
is a field in which the data sources are treated separately and their contributions
combined to provide a joint inference concerning the correct label for a pixel, but does
not, of itself, require the original data variables to be numerical. While it involves
numerical manipulation of quantitative measures of evidence, the bridge between
these measures and the original data is left largely to the user.

12.3.1
The Concept of Evidential Mass

The essence of the technique involves the assignment of belief, represented as a so-
called mass of evidence, to various labelling propositions for a pixel. The total mass
of evidence available for allocation over the candidate labels for the pixel is unity.
To see how this is done suppose a classification exercise, involving for the moment
just a single source of image data, has to label pixels as belonging to one of just three
classes: ω1, ω2 and ω3. It is important that the set of classes be exhaustive (i.e. cover
all possibilities) so that ω3 for example might be the class “other”. Suppose some
means is available by which labels can be assigned to a pixel (which could include
maximum likelihood methods if desired) which tells us that the three labels have
likelihoods in the ratios 2 : 1 : 1. However, suppose we are a little uncertain about
the labelling process or even the quality of the data itself, so that we are only willing
to commit ourselves to classifying the pixel with about 80% confidence. Thus we
are about 20% uncertain about the labellings, even though we are reasonably happy
about the relative likelihoods. Using the symbolism of the Theory of Evidence, the
distribution of the unit mass of evidence over the three possible labels, and our
uncertainty about the labelling, is expressed:

m(〈ω1, ω2, ω3, θ〉) = 〈0.4, 0.2, 0.2, 0.2〉 (12.2)
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where the symbol θ is used to signify the uncertainty in the labelling1. Thus the mass
of evidence assigned to label ω1 as being correct for the pixel is 0.4, etc. (Note that
if we were using straight maximum likelihood classification, without accounting for
uncertainty, the probability that ω1 is the correct class for the pixel would have been
0.5). We now define two further evidential measures. First, the support for a labelling
proposition is the sum of the mass assigned to the proposition and any of its subsets.
Subsets are considered later. The plausibility of the proposition is one minus the total
support of any contradictory propositions. Support is considered to be the minimum
amount of evidence in favour of a particular labelling for a pixel whereas plausibility
is the maximum possible evidence in favour of the labelling. The difference between
the measures of plausibility and support is called the evidential interval; the true
likelihood that the label under consideration is correct for the pixel is assumed to lie
somewhere in that interval. For the above example, the supports, plausibilities and
evidential intervals are:

s(ω1) = 0.4 p(ω1) = 0.6 p(ω1) − s(ω1) = 0.2

s(ω2) = 0.2 p(ω2) = 0.4 p(ω2) − s(ω2) = 0.2

s(ω3) = 0.2 p(ω3) = 0.4 p(ω3) − s(ω3) = 0.2

In this simple case the evidential intervals for all labelling propositions are the same
and equal to the mass allocated to the uncertainty in the process or data as discussed
above, i.e. m(θ) = 0.2. Consider another example involving four possible spectral
classes for the pixel, one of which represents our belief that the pixel is in either of
two classes. This will demonstrate that, in general, the evidential interval is different
from the mass allocated to uncertainty. Suppose the mass distribution is:

m(〈ω1, ω2, ω1 ∨ ω2, ω3, θ〉) = 〈0.35, 0.15, 0.05, 0.3, 0.15〉
where ω1 ∨ ω2 represents ambiguity in the sense that, for the pixel under consider-
ation, while we are prepared to allocate 0.35 mass to the proposition that it belongs
to class ω1 and 0.15 mass that it belongs to class ω2, we are prepared also to allocate
some additional mass to the fact that it belongs to either of those two classes and not
any others.

For this example the support for ω1 is 0.35 (being the mass attributed to it)
whereas the plausibility that ω1 is the correct class for the pixel is one minus the
support for the contradictory propositions. There are two – i.e. ω2 and ω3. Thus the
plausibility of ω1 is 0.55, and the corresponding evidential interval is 0.2 (different
now from the mass attributed to uncertainty). The support given to the mixture class
ω1 ∨ ω2 is 0.55, being the sum of masses attributed to that class and its subsets.

To see how the Theory of Evidence is able to cope with the problem of multisource
data, return now to the simple example given by the mass distribution in (12.2).
Suppose there is available a second data source which is also able to be labelled

1 Strictly, in the Theory of Evidence, θ represents the set of all possible labels. The mass
associated with uncertainty has to be allocated somewhere; thus it is allocated to the set as
a whole.
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into the same set of spectral classes. Again, however, there will be some uncertainty
in the labelling process which can be represented by a measure of uncertainty as
before; also, for each pixel there will be a set of likelihoods for each possible label.
For a particular pixel suppose the mass distribution after analysing the second data
source is

µ(〈ω1, ω2, ω3, θ〉) = 〈0.2, 0.45, 0.3, 0.05〉 (12.3)

Thus, the second analysis seems to be favouring ω2 as the correct label for the pixel,
whereas the first data source favours ω1. The Theory of Evidence now allows the two
mass distributions to be merged in order to combine the evidences and thus come up
with a label which is jointly preferred and for which the overall uncertainty should
be reduced. This is done through the mechanism of the orthogonal sum.

12.3.2
Combining Evidence – the Orthogonal Sum

Dempster’s orthogonal sum is illustrated in Fig. 12.2. It is performed by construct-
ing a unit square and partitioning it vertically in proportion to the mass distribution
from one source and horizontally in proportion to the mass distribution from the
other source. The areas of the rectangles thus formed are calculated. One rectangle is
formed from the masses attributed to uncertainty (θ) in both sources; this is consid-
ered to be the remaining uncertainty in the labelling process after the evidences from
both sources have been combined. Rectangles formed from the masses attributed
to the same class have their resultant (area) mass assigned to that class. Rectangles
formed from the product of mass assigned to a particular class in one source and
mass assigned to uncertainty in another source have their resultant mass attributed to
the specific class. Similarly, rectangles formed from the product of a specific label,
say ω2 and an ambiguity, say ω1 ∨ ω2, are allocated to the specific class. Rectangles
formed from different classes in the two sources are contradictory and are not used
in computing merged evidence. In order that the resulting mass distribution sums
to unity a normalising denominator is computed as the sum of the areas of all the
rectangles that are not contradictory. For the current example this factor is 0.47. Thus,

Fig. 12.2. Graphical illustration of the ap-
plication of the Dempster orthogonal sum
for merging the evidences from two data
sources; the labels in the white squares in-
dicate the class to which the mass is at-
tributed
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after the orthogonal sum has been computed the resulting (combined evidence) mass
distribution is:

m(ω1) = (0.08 + 0.02 + 0.04)/0.47 = 0.298

m(ω2) = (0.09 + 0.01 + 0.09)/0.47 = 0.404

m(ω3) = (0.06 + 0.01 + 0.06)/0.47 = 0.277

m(θ) = 0.01/0.47 = 0.021

Thus class 2 is seen to be recommended jointly. The reason for this is that source 2
favoured class 2 and had less uncertainty. While source 1 favoured class 1, its higher
level of uncertainty meant that it was not as significant in influencing the final out-
come.

The orthogonal sum can also be expressed in algebraic form (Lee et al. 1987,
Garvey et al. 1981). If two mass distributions are denoted m1 and m2 then their
orthogonal sum is:

m12(z) = K
∑

(x
⋂

y=z)

m1(x).m2(y) � m1(x) ⊕ m2(x)

where

K−1 =
∑

(x∩y 	=ϕ)

m1(x).m2(y)

in which ϕ is the null set. In applying these formulas it is important to recognise that

(x ∨ y) ∩ y = y

θ ∩ y = y

For more than two sources, the orthogonal sum can be applied repetitively since the
expression is both commutative (the order in which the sources are considered is not
important) and associative (can be applied to any pair of sources and then a third
source, or equivalently can be applied to a different pair and a third source).

12.3.3
Decision Rule

After the orthogonal sum has been applied the user can then compute the support for
and plausibility of each possible ground cover class for a pixel. Two following steps
are then possible. First a decision rule might be applied in order to generate a single
thematic map in the same manner as is done with statistical classification methods.

A number of candidate decision rules are possible including a comparison of
the supports for the various candidate classes and a comparison of plausibilities as
discussed in Lee et al. (1987). Generally a maximum support decision rule would
be used, although if the plausibility of the second most favoured class is higher than
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the support for the preferred label, the decision must be regarded as having a degree
of risk.

Secondly, rather than produce a single thematic map, it is possible to produce a
map for each category showing the distribution of supports (or plausibilities). This
might be particularly appropriate in a situation where the ground cover classes are
not well resolved (such as in a geological classification, for an illustration of which
see Moon (1990)).

12.4
Knowledge-Based Image Analysis

Techniques for the analysis of mixed data types, such as the multisource statistical
classification and evidential methods treated above, have their limitations.Apart from
their complexities, most are restricted to data that is inherently in numerical form,
such as that from multispectral and radar imaging devices, along with quantifiable
terrain data like digital elevation maps. Yet, in the image data base of a Geographic
Information System (GIS), for example, there are many spatial data sets that are
non-numerical but which would enhance considerably the results expected from an
analysis of a given geographical region if they could be readily incorporated into the
decision process. These include geology and soil maps, planning maps and even maps
showing power, water and road networks. It is clear therefore that quite a different
approach for handling non-numerical data is required, particularly when a user wishes
to exploit the richness of information imbedded in the multisource, multisensor data
environment of a GIS. The Theory of Evidence treated in Sect. 12.3 is one possibility,
but it still requires the analysis task to be expressed in a quantifiable form so that
numerical manipulation of evidence is possible. To avoid having to establish this
bridge, a method for qualitative reasoning would be a particular value.

The adoption of expert systems or knowledge-based methods offers promise in
this regard. It is the role of this section to outline some of the fundamental aspects of
such processes and to demonstrate their potential. The field is very diverse and, as
will become clear in reading the following, the use of one particular approach may
be guided by individual preferences and available software rather than a perception
of what is the most appropriate algorithm for a given purpose. What will become
clear however is that the use of (often qualitative) interpreter knowledge greatly aids
analysis; moreover, quite simple knowledge-based methods can yield surprisingly
good results.

12.4.1
Knowledge Processing: Emulating Photointerpretation

To develop the theme of a knowledge-based approach it is of value to return to the
comparison of the attributes of photointerpretation and quantitative analysis devel-
oped in Table 3.1. However, rather than making the comparison solely on the basis
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of a single source of multispectral data, as was the case in Chapter 3, consider now
that the data to be analysed consists of three parts: a Landsat multispectral image, a
radar image of the same region and a soil map of that region. From what has been
said above, standard methods of quantitative analysis cannot cope with trying to
draw inferences about the cover types in the region since they will not function well
on two numerical sources of quite different characteristics (multispectral and radar
data) and also since they cannot handle non-numerical data at all.

In contrast, consider how a skilled photointerpreter might approach the problem
of analysing this multiple source of spatial data. Certainly he or she would not wish
to work at the individual pixel level, as discussed in Sect. 3.1, but would more likely
concentrate on regions. Suppose a particular region was observed to have a predomi-
nantly pink tone on a standard false colour composite print of the multispectral data,
leading the photointerpreter to infer initially that the region is vegetated; whether it is
a grassland, crop or forest region may not yet be clear. However the photointerpreter
could then refer to the radar imagery. If its tone is dark, then the region would be
thought to be almost smooth at the radar wavelength being used. Combining this
evidence with that from the multispectral source, the photointerpreter is then led to
consider the region as being either grassland or a small crop. He or she might then
resolve this conflict by referring to the soil map of the region. Noting that the soil
type is not that normally associated with agriculture, the photointerpreter would then
conclude that the region is same form of natural grassland.

In practice the process of course may not be so straightforward, and the photoin-
terpreter may need to refer backwards and forwards over the data sets in order to
finalise an interpretation, especially if the multispectral and radar tones were not uni-
form for the region. For example, some spots on the radar imagery may be bright. The
photointerpreter would probably regard these as indicating shrubs or trees, consistent
with the overall region being labelled as natural grassland. The photointerpreter will
also account for differences in data quality, placing most reliance on data that is seen
to be most accurate or most relevant to a particular exercise, and weighting down
unreliable or marginally relevant data.

The question we need to ask at this stage is how the photointerpreter is able to
make these inferences so easily. Even apart from spatial processing, as discussed
in Table 3.1 (where the photointerpreter would also use spatial clues such as shape
and texture), the key to the photointerpreter’s success lies in his or her knowledge
– knowledge about spectral reflectance characteristics, knowledge of radar response
and also of how to combine the information from two or more sources (for example,
pink multispectral appearance and dark radar tone indicates a low level vegetation
type). We are led therefore to consider whether the knowledge possessed by an expert
such as a skilled photointerpreter can be given to and used by a machine and so devise
a method for analysis that is able to handle the varieties of spatial data type available in
GIS-like systems. In other words can we emulate the photointerpreter’s approach? If
we can then we will have available an analytical procedure capable of handling mixed
data types, and also able to work repetitively, at the pixel level if necessary. With
respect to the latter point, it is important to recognise that photointerpreters generally
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work at a regional rather than a pixel level; knowledge-based image analysis is able
to follow such an approach if segments in image data have previously been identified
using region growing techniques such as that used in ECHO (Sect. 8.8.2).

12.4.2
Fundamentals of a Knowledge-Based Image Analysis System

12.4.2.1
Structure

If we were to visualise the structure of a traditional supervised classification approach
to the analysis of image data we might come up with the block diagram shown in
Fig. 12.3a. The data to be analysed is fed to a processor (computer) which is also
supplied with the algorithms (maximum likelihood rule, minimum distance rule etc.)
appropriate to the task. The algorithms are applied pixel by pixel to produce a label
for each pixel, dependent solely on the class signatures and the characteristics of the
data. It can be argued that some expert knowledge has been supplied to the process
by the user in relation to the selection of algorithm to use and, more particularly,
in selecting the reference data with which to train the classifier. The user, however,
need not possess any detailed knowledge of spectral reflectance characteristics or
other properties in order that the analysis proceed and results be produced. As we
have seen in previous chapters quite good results can be achieved provided only that
training regions are chosen carefully and any multimoding is removed when using
maximum likelihood classification.

In contrast, Fig. 12.3b shows the structure of a knowledge-based approach to the
analysis. Again, the spatial data to be analysed is fed to the processor, but so is a

Fig. 12.3. a Traditional image analysis computing. b Knowledge based image analysis system.
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knowledge base. The knowledge stored in this knowledge base has been obtained
from experts in the field of the analysis and stored in such a manner (see Sect. 12.4.2.2)
that it can be used to analyse the data. The knowledge is applied to the data in the
processor by what is called an inference mechanism, or sometimes an inference
engine. Its role is to interpret the knowledge base, apply the knowledge to the data,
and make, and keep track of, decisions about the class memberships of pixels.

12.4.2.2
Representation of Knowledge: Rules

There are several ways in which expert knowledge can be captured and recorded for
use by a knowledge-based analysis system (Sell, 1985; Frost, 1986). The simplest,
and perhaps most common, is to use rules (sometimes called production rules). These
are of the form:

if condition then inference.

‘Condition’ in the rule is a logical expression which can be either true or false. If it
is true then the inference is justified otherwise no information is provided by that
rule. ‘Condition’ can be a simple logical expression or can be a compound logical
statement in which several components are linked through the logical or and and
operations. These operations are defined as:

The composite condition (condition 1 and condition 2) is true only if
condition l and condition 2 are both true.

The composite condition (condition 1 or condition 2) is true if either
condition 1 or condition 2 is true.

Note that rule-based knowledge systems can also make use of the logical not oper-
ation, defined by:

not (condition) is false if condition is true, and vice versa.

Each single rule can be thought of as encapsulating one item of knowledge. For
example, a rule which could be applied to a Landsat MSS pixel to check whether it
is likely to be vegetated might be:

if near infrared response > red response then vegetation.

Although this is a weak rule, we know it is correct from our knowledge of the spectral
reflectance characteristics of vegetation. Similarly, a rule that would reveal a region
to be a smooth (specular or near specular) surface could be:

if radar tone is dark then smooth surface.

Note that these rules need not be conclusive, but rather they should simply provide
a degree of evidence in favour of pixels having the labels specified. Sometimes the
knowledge contained in several rules might be necessary to enable a pixel to be
identified with any degree of certainty.
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A knowledge base in such an analysis system might contain many hundreds of
rules of these types, obtained from experts in particular fields. When image data is
presented to the inference engine for analysis, the engine goes through the rule base
checking the support for or against various labelling propositions. Some rules will
offer strong support while others will be weak, as illustrated above. Also, several
candidate classes for a particular pixel might find support among the rules; proce-
dures are then required for resolving among them. Possible means for doing this are
described in the following sections.

As an example of a simple rule representation of knowledge, suppose a partic-
ular Landsat MSS image has to be segmented into just vegetation, water and other
(unspecified) cover types. The following set of rules should be able to accomplish
this task:

if band 7/band 5 > threshold then vegetation
if band 7/band 4 < 1 then water
if not (water) and not (vegetation) then other

Notice that the third rule supposes for this particular exercise that anything that is
not water or vegetation must be other. Also note that this rule has two conditions
(sometimes called antecedents) that are logically ‘and-ed’. Both must be true in
order that the total antecedent is true and thus the inference (sometimes called the
consequent) is justified. In the first rule a parameter is used – i.e. ‘threshold’. This
requires a numerical value to be available, which will almost certainly be scene
dependent. The value could be provided to the system before the analysis starts by
the user entering it manually or, alternatively, a small training region of vegetation
could be used from which the value could be learnt. Many of the rules encountered
in remote sensing image analysis will require parameters such as thresholds.

The rules illustrated here, and indeed most of those to be encountered in this
treatment of knowledge-based methods, rely on spectral or similar pixel-specific
knowledge. In many expert systems devised for the analysis of remote sensing and
GIS data, spatial constraints are also used as a source of knowledge and appropriate
rules are developed (Ton et al., 1991). Even spectrally derived rules may not rely
on simple expressions and comparisons of bands. Spectral contrasts, such as the
brightness in a given band compared with total image brightness, can also be used
(Wharton, 1987).

12.4.2.3
The Inference Mechanism

The inference engine or mechanism can be quite simple if the knowledge-based
system is very specific to a particular application, or can be more complex and
powerful if a general expert system is required. In the simple example of the previous
section all the inference mechanism has to do is to check which of the rules gives
a positive response for each pixel in the image and then label the pixel accordingly.
More generally, however, when large rule sets are used, the inference mechanism
needs to keep track of all the rules that infer a particular cover type, along with
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those that infer that the pixel is not of that cover type and, similarly, the rules that
suggest the pixel is or is not from other candidate classes; finally it has to make
a decision about the correct class by weighing all the evidence from the rules. It
may also have to account for redundant reasoning and circular arguments, and has
to be able to assess whether long reasoning chains carry as much weight in the
decision process as inferences that might involve only a single decision in coming up
with the label for a pixel. In addition, an effective inference process will also allow
uncertainties in data quality, missing data and missing rules to be accommodated.
That degree of complexity is beyond this introductory treatment; a full discussion of
all of these issues will be found in Srinivasan (1990) and Srinivasan and Richards
(1993). However, it is of value to consider briefly something of the complexity that
can be built into the inference mechanism in order to emulate more closely the
reasoning process that might be adopted by a typical photointerpreter. To do this, it
is instructive first to consider the approach used by Wharton (1987).

Wharton uses eight bands of Thematic Mapper Simulator data, centered on:

band 1 0.485 µm band 2 0.560 µm
band 3 0.660 µm band 4 0.880 µm
band 5 1.150 µm band 6 1.650 µm
band 7 2.215 µm band 8 11.400 µm

He then establishes spectral rule sets for each of his classes of interest. These rules
are in three groups, one of which compares band combinations. For example, a rule
for determining whether a pixel might belong to the green vegetation class is:

if average of bands 4 and 5 > sum of bands 2 and 3
then class is green vegetation [5, 20]

The figures in square brackets are measures of evidence in favour of and against the
labelling proposition. Thus, when testing for the green vegetation category, if the
test is positive then the evidence in support of this being the correct class for the
pixel is incremented by 5. If the test fails then the evidence against the class for the
pixel being green vegetation is incremented by 20. It is the function of the inference
process to keep track of all the evidence in favour of and against each class for a given
pixel and then, when all the rules have been used, to test the accumulated evidence
and decide the most appropriate class for the pixel from the perspective of spectral
data.

12.4.3
Handling Multisource and Multisensor Data

There are two approaches that might be adopted when considering the development
of a knowledge-based approach for the analysis of data that comes from more than
one source or sensor. If the analysis is strongly focussed on a particular application
it might be appropriate to consider a single knowledge base which contains all the
rules, including those rules necessary to process two or more sources together. As
a simple illustration, the following rule would be used to determine if a particular
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Fig. 12.4. Decomposed multisource analysis using a knowledge based approach

region might be urban if both radar and multispectral data were available:

if red response is high and radar tone is high then urban

Of course, use of this rule requires a specification of what ‘high’ means for both
the multispectral and radar data. However, given that those thresholds are available,
rules such as this can be used to process the data sources jointly.

Possibly a more practical approach is, first, to decompose the multisource, mul-
tisensor problem into a set of individual analyses and then combine their results
in a separate expert system that is able to perform the joint analysis as depicted in
Fig. 12.4. Each individual analysis module and the combination module will have
its own rule base and inference mechanism. The advantages of this approach are that
the rule sets are each focussed on a particular sensor and that results can be updated
at a later time if and when new data sources become available. This is a particularly
important consideration in the context of a GIS.

Separate knowledge bases to be used for a simple segmentation could be:

For an MSS source:
if band 7/band 5 > 3.0 then vegetation
if band 7/band 4 < 0.9 then water
if (band 4 + band 5)/(band 6 + band 7) > 0.6 then soil

For the radar source (see Fig. 1.5):

if radar tone < threshold 1 then specular surface
if radar tone > threshold 2 then corner reflector effect
if threshold 1 < radar tone < threshold 2 then diffuse surface

or volume scattering

On the basis of these rules it is presumed we are not able to discriminate diffuse
surface scattering and volume scattering. The combined inference ‘diffuse surface
or volume scattering’ is thus the best that can be done, where appropriate, in the
following.

No separate rules are to be used at this stage for the soil map in Fig. 12.4, since
it already consists of a set of labels for each pixel.
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If the rules sets above are applied, as appropriate, to the MSS and radar data
we will produce labels for each pixel from the individual analyses. For example
the MSS data might specify a pixel as vegetation and the radar data classify it as a
specular surface, while the soil map indicates a loam soil type. What the combination
knowledge-base has to do is to process these labels to come up with a specific land
cover category for the pixel, of the type needed by the user. A set of rules that might
be found in the combination module therefore could be:

if soil and specular surface then bare ground
if soil and corner reflector effect then urban
if vegetation and specular surface then low level vegetation
if vegetation and diffuse surface or volume then trees or shrubs
if low level vegetation and loam then crops
if low level vegetation and sand then grassland
if low level vegetation and clay then grassland
if water and specular surface then lake
if water and diffuse surface or volume then open water

Whereas all previous examples of rules have had numerical conditions to test, these
combination rules have conditions defined in terms of labels. This decomposition
strategy is illustrated in the following example.

12.4.4
An Example

Figure 12.5 shows Landsat MSS bands 5 and 7 and an L band SIR-B synthetic
aperture radar image for a small urban area in Sydney’s north-western suburbs.
The Landsat data is unable to distinguish between urban areas and areas cleared
for development. The radar data on the other hand, provides structural information,
but no information on the actual cover type. The knowledge-based analysis system
developed by Srinivasan and Richards (1993) is able to analyse the images jointly
and thus develop a cover type map that resolves classes that are confused in either
the Landsat or radar data alone. Full details of this and other applications of this
approach will be found in Srinivasan (1990). In the following sections a summary of
the expert system used is provided. It is based upon a decomposition philosophy of
the style shown in Fig. 12.4 but, in its full version, also has a final module that allows
spatial knowledge to be applied to the output of the combination module. The latter
is an important component of photointerpretation and can be handled in knowledge-
based analysis by region growing beforehand or by applying neighbourhood relations
during or after analysis. For simplicity in this example, only a pixel-based approach
is discussed.
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Fig. 12.5. Landsat MSS band 5 (a)
band 7 (b) and SIR-B radar data (c) of
an urban region in the City of Sydney

12.4.4.1
Rules as Justifiers for a Labelling Proposition

In this method, production rules of the form outlined above are referred to as justifiers
since they provide a degree of justification or evidence in favour of a particular
labelling proposition. Expressing a rule in its generic form:

if condition then inference

the approach specifies four types of rule:

Conclusive If the condition is true then the justification for the infer-
ence is conclusive (i.e. absolute).

For example:

if radar tone is black then radar shadow.

Prima Facie If the condition is true then there is reason to believe that
the inference is true. If the condition is false it cannot be
concluded in general that the inference is false.
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For example:

if MSS band 7/MSS band 5 > 2 then vegetation.

Criterion This is a special prima facie justifier for which a false
condition provides prima facie justification to disbelieve
the inference.

For example:

if MSS band 7 < MSS band 4 then water

(noting that if MSS band 7 > MSS band 4 then definitely
not water).

Contingent If the condition is true then support is provided for other,
prima facie, reasons to believe the inference. These types
of rule are not sufficient in themselves to justify the infer-
ence.

For example:

if MSS band 7 > MSS band 5 then vegetation.

This structuring of justifications is not unlike the strengths of reasoning used by
photointerpreters. In some cases the evidence would suggest to a photointerpreter
that the cover type simply must be of a particular type. In other cases the evidence
might be so slight as simply to suggest what the cover type might be – indeed the
photointerpreter might even withhold making a decision in such a situation until
some further evidence is available.

This has been a simple review of the concept of justifiers in qualitative reasoning
systems. A fuller treatment, which considers justifiers as inferences in a so-called
defeasible logic, can be found in Nute (1988), Pollock (1974) and Srinivasan (1990).

12.4.4.2
Endorsement of a Labelling Proposition

The justifiers of the previous section play a major role in reasoning. At any given
stage in the reasoning process an inference may have valid reasons for and against
it. It is then necessary to resolve among these to determine the most supported label.
This is the role of the endorsement

The endorsement of a label is the final level of justification for an inference.
Given a set of justifiers for and against an inference, the implementation used in this
example of a scene interpretation system employs the following endorsements:

The inference is Definitely True if there is at least one conclusive jus-
tifier in support.

The inference is Likely To be True if there is some net prima facie evi-
dence in support.
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The inference is Indicated if, in the absence of prima facie jus-
tification, there are some net contin-
gent justifiers in its favour.

A proposition is Null if all justifiers for the belief are bal-
anced by those for opposing beliefs.

A proposition is Contradicted if it has conclusive justifiers balanced
for and against it.

A labelling proposition is said to be Unknown if nothing is known
about it.

Complements of these endorsements also exist.

After all the rules in the knowledge base have been applied to a pixel under examina-
tion, each of the possible labels will have some level of endorsement. That with the
strongest endorsement is chosen as the label most appropriate for the pixel. Endorse-
ments for other labels, although weaker, may still have value: for example, the two
endorsements for a pixel that ‘grassland is likely to be true’ and ‘soil is indicated’ are
fully consistent – the cover type may in fact be a sparse grassland, which the analyst
would infer from the pair of endorsements.

If an endorsement falls in the last three categories above the pixel would be left
unclassified.

12.4.4.3
Knowledge Base and Results

The knowledge base for this exercise consisted of the following rules (Srinivasan,
1990).

For the Landsat MSS data source:

if band 7/band 5 is approximately 1 then contingent support for urban
and contingent support for soil

if band 7/band 5 is moderate then contingent support for ur-
ban, and contingent support for
vegetation

if band 7/band 5 is high then prima facie support for veg-
etation

These rules have to be trained in order to establish what is meant by moderate and
high.

For the SIR-B data source:

if radar response is low then prima facie support for specular be-
haviour
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if radar response is moderate then prima facie support for volume
scattering

if radar response is high then prima facie support for corner re-
flector

Similarly the thresholds between low, moderate and high are established using small
training areas.
The combination rules used by Srinivasan are:

if vegetation is likely to be true and
corner reflector is likely to be true then prima facie
support for woody vegetation

if vegetation is likely to be true and
volume scattering is likely to be true then prima facie
support for vegetation

if vegetation is likely to be true and specular
behaviour is likely to be true then prima facie
support for grassland

if soil is likely to be true and specular behaviour
is likely to be true then prima facie
support for cleared land

if vegetation is indicated and corner
reflector is likely to be true then prima facie
support for residential

if vegetation is indicated and volume
scattering is likely to be true then prima facie
support for residential

if urban is likely to be true and corner
reflector is likely to be true then prima facie
support for buildings

if vegetation is indicated and vegetation is not likely to be true
and specular behaviour
then contingent support for grassland

Note that the conditions tested in these roles are endorsements from the single source
knowledge-base analyses.

Applying these rules yields the thematic map of Fig. 12.6, while Table 12.1
summarises the results quantitatively, using a careful photointerpretation of the data
sets, and local knowledge, to provide the necessary ground truth data. Figure 12.6
demonstrates that the classifier is able to distinguish between grasslands and woody
vegetation, owing to the structural information present in the radar image. Note also
that not all bright regions in the radar image are classified as urban. Some actually
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Table 12.1. Results of Combined Multispectral and Radar Analysis
Overall accuracy = 77.3% (area weighted = 81.5%)

Fig. 12.6. Thematic map produced by
knowledge based analysis of the data in
Fig. 12.5. Classes are: black = soil, dark
grey = grassland, light grey = woody vege-
tation, white = urban (cleared land, build-
ings, residential)

correspond to rows of trees; the confusion has been resolved using the land-cover
information present in the Landsat image.

References for Chapter 12

Schistad Solberg et al. (1994) develop the multisource statistical method of Sect. 12.2 further
and provide means by which joint decisions can be made from multiple sources of data, while
incorporating the effect of reliability of the data sources. Bruzzone et al. (1997) provide a
comparative study of maximum like1ihood methods (modified to bring in ancillary information
through the prior probabilities) and neural networks for multisource classification.

Full details of the Theory of Evidence can be found in Shafer (1976): It has been applied
to the problem of image analysis by Lee et al. (1987) and to integration of geologica1 and
geophysical spatial data sets by Moon (1990) while Garvey (1987) has used the method for
describing geographical areas. Gong (1996) considers both the Theory of Evidence and the
application of feed forward neural networks as methodologies for data fusion involving inte-
grated spatial data types. Peddle (1995a) has incorporated evidential reasoning into a software
scheme called MERCURY⊕ as a means for multisource classification. Peddle (1995b) has



References for Chapter 12 355

also discussed how measures of evidence can be generated from histograms of class training
data.

The application of knowledge-based techniques to remote sensing was demonstrated by
Nagao and Matsuyama (1980). Carlotto et al. (1984) describe a knowledge-based classification
system for a single source of data, as does Mulder et al. (1988). A spectral rule-based approach
for urban land cover discrimination using Landsat TM has been demonstrated by Wharton
(1987), while Ton et al. (1991) demonstate the use of both spectral and spatial knowledge for
segmentation of Landsat imagery. Nicolin and Gabler (1987) describe a system for automatic
interpretation of suburban scenes while Goldberg et al. (1985) describe a multi-level expert
system for updating forestry maps with Landsat data, that has led to the development of a
general purpose shell (Goodenough et al., 1987). Schowengerdt (1989) describes a system
which enables inexperienced users perform rule-based image processing tasks. Kartiken et al.
(1995) demonstrate the application of rule based expert systems to land cover analysis. Duch
et al. (2004) provide a good overview of rule-based methods in general.

Knowledge of the radar response of terrain at different angles of incidence is used by
Dobson et al. (1996) to develop a knowledge based approach to (structural) land cover classi-
fication from two radar sensors (ERS-l and JERS-l). Solaiman et al. (1998) show how fusion
of thematic map and edge information, both obtained from the same image data, can be used
to improve a final map product.

J.A. Benediktsson, J.R. Sveinsson and P.H. Swain, 1997: Hybrid Consensus Theoretic Clas-
sification. IEEE Trans. Geoscience and Remote Sensing, 35, 833–843.

L. Bruzzone, C. Conese, F. Maselli and F. Roli, 1997: Multisource Classification of Complex
Rural Areas by Statistical and Neural-Network Approaches. Photogrammetric Engineer-
ing and Remote Sensing, 63, 523–533.

M.J. Carlotto, V.T. Tom, P.W. Baim and R.A. Upton, 1984: Knowledge-Based Multispectral
Image Classification. SPIEVol. 504,Applications of Digital Image ProcessingVII, 45–53.

M.C. Dobson, L.E. Pierce and F.T. Ulaby, 1996: Knowledge-Based Land-Cover Classification
Using ERS-l/JERS-l SAR Composites. IEEE Trans Geoscience and Remote Sensing, 34,
83–99.

W. Duch, R. Setiono and J.M. Zurada, 2004: Computational Intelligence Methods for Rule-
Based Data Understanding. Proc. IEEE, 92, 771–805.

R. Frost, 1986: Introduction to Knowledge Base Systems, McGraw-Hill, New York.
T.D. Garvey, 1987: Evidential Reasoning for Geographic Evaluation for Helicopter Route

Planning. IEEE Trans Geoscience and Remote Sensing, GE-25, 294–304.
T.D. Garvey, J.D. Lowrance and M.A. Fisher, 1981: An Inference Technique for Integrating

Knowledge from Disparate-Sources. Proc 7th Int. Conf.Artificial Intelligence,Vancouver,
319–325.

M. Goldberg, D.G. Goodenough, M. Alvo and G. Karam, 1985: A Hierarchical Expert System
for Updating Forestry Maps with Landsat Data. Proceedings of the IEEE, 73, 1054–1063.

P. Gong, 1996: Integrated Analysis of Spatial Data from Multiple Sources: Using Evidential
Reasoning and Artificial Neural Network Techniques for Geologic Mapping. Photogram-
metric Engineering and Remote Sensing, 62, 513–523.

D.G. Goodenough, M. Goldberg, G. Plunkett and J. Zelek, 1987:An Expert System for Remote
Sensing. IEEE Trans Geoscience and Remote Sensing, GE-25, 349–359.

H.N. Gross and J.R. Schott, 1998: Application of Spectral Mixture Analysis and Image Fusion
Techniques for Image Sharpening. Remote Sensing of Environment, 63, 85–94.

B. Kartikeyan, K.L. Majumder and A.R. Dasgupta, 1995: An Expert System for Land Cover
Classification. IEEE Trans Geoscience and Remote Sensing, 33, 58–66.



356 12 Multisource, Multisensor Methods

T. Lee, J.A. Richards and P.H. Swain, 1987: Probabilistic and Evidential Approaches for
Multisource Data Analysis. IEEE Trans Geoscience and Remote Sensing, GE-25, 283–
293.

W.L. Moon, 1990: Integration of Geophysical and Geological Data Using Evidential Belief
Function. IEEE Trans Geoscience and Remote Sensing, 28, 711–720.

N.J. Mulder, H. Middlekoop and J. Miltenberg, 1988: Progress in Knowledge Engineering for
Image Classification. 16th Congress of the International Society for Photogrammetry and
Remote Sensing, 27 (111), 395–405.

M. Nagao and T. Matsuyama, 1980: A Structural Analysis of Complex Aerial Photographs.
Plenum, New York.

B. Nicholin and R. Gabler, 1987: A Knowledge-Based System for the Analysis of Aerial
Images. IEEE Trans Geoscience and Remote Sensing, GE-25, 317–328.

D. Nute, 1988: Defeasible Reasoning: A Philosophical Analysis in Prolog, in Aspects of
Artificial Intelligence. J.H. Fetzwer (Ed.) Dordrecht, Kluwer Academic Publishers.

D.R. Peddle, 1995 a: MERCURY⊕: An Evidential Reasoning Image Classifier. Computers
and Geosciences, 21, 1163–1176.

D.R. Peddle, 1995 b: Knowledge Formulation for Supervised Evidential Classification. Pho-
togrammetric Engineering and Remote Sensing, 61, 409–417.

J.L. Pollack, 1974: Knowledge and Justification. N.J. Princeton University Press.
J.A. Richards, D.A. Landgrebe and P.H. Swain, 1982: A means of utilizing ancillary informa-

tion in multispectral classification. Remote Sensing of Environment, 12, 463–477.
A.H. Schistad Solberg, A.K. Jain and T. Taxt, 1994: Multisource Classification of Remotely

Sensed Data: Fusion of Landsat TM and SAR Images. IEEE Trans Geoscience and Remote
Sensing. 32, 768–778.

R.A. Schowengerdt, 1989: A General Purpose Expert System for Image Processing. Pho-
togrammetric Engineering and Remote Sensing, 55, 1277–1284.

P.S. Sell, 1985: Expert Systems – a Practical Introduction. Maxmillan, Southampton.
G. Shafer, 1976: A Mathematical Theory of Evidence. NJ, Princeton UP.
B. Solaiman, R.K. Koffi, M-C Mouchot and A. Hillion, 1998: An Information Fusion Method

for Multispectral Image Classification Postprocessing. IEEE Trans Geoscience and Re-
mote Sensing. 36, 395–406.

A. Srinivasan, 1990:AnArtifical IntelligenceApproach to theAnalysis of Multiple Information
Sources in Remote Sensing. PhD Thesis, The University of New South Wales, Kensington.

A. Srinivasan and J.A. Richards, 1993: Analysis of GIS Spatial Data Using Knowledge-Based
Methods. Int. J. Geographic Information Systems, 7, 479–500.

A.H. Strahler, 1980: The Use of Prior Probabilities in Maximum Likelihood Classification of
Remotely Sensed Data. Remote Sensing of Environment, 10, 135–163.

J. Ton, J. Stickten and A.K. Jain, 1991: Knowledge-Based Segmentation of Landsat Images.
IEEE Trans Geoscience and Remote Sensing, 29, 222–232.

F. Van Der Meer, 1997: What Does Multisensor Image Fusion Add in Terms of Information
Content for Visual Interpretation? Int. J. Remote Sensing, 18, 445–452.

S.W. Wharton, 1987: A Spectral Knowledge Based Approach for Urban Land Cover Discrim-
ination. IEEE Trans Geoscience and Remote Sensing, 25, 272–282.

Problems

12.1 Compare the attributes of a knowledge-based approach to image interpretation with
the more usual approach which uses standard statistical algorithms, such as the maximum
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likelihood rule. You should comment on both the training/knowledge acquisition phase and
the labelling phase.

12.2 Write a set of production rules that might be used to smooth a thematic map. The rules
are to be applied to the central labelled pixel in a 3×3 window. Assume the map has 5 possible
classes and that map segments with as few as 4 pixels are acceptable to the ultimate user.

12.3 Develop a set of production rules that might be applied to Landsat TM imagery to create
a thematic map with five classes: vegetation, deep clear water, shallow or muddy water, dry
soil and wet soil. To do this you may need to refer to a source of information on the spectral
reflectance behaviour of these cover types in the ranges of the TM bands.

12.4 A rule-based analysis system is a very effective way of handling multi-resolution image
data. For example, rules could be applied first to the pixels of the low resolution data to see
whether there is a strong endorsement for any of the available labels. If so then the high spatial
resolution data source need not be consulted, and data processing time is saved. If, however,
the rule-based system can only give weak support to any of the available labels on the basis
of the low resolution data, then it could consult the high resolution source to see whether the
smaller pixels can be labelled at that level with certainty. This could be the case in an urban
region where some low resolution pixels (at say MSS resolution) may be difficult to classify
because they are a mixture of vegetation and concrete. The resolution of SPOT HRV may be
able to resolve those classes. In some other urban areas, which might be large vegetated regions
such as golf courses, the MSS data is quite adequate. Using the strategy of Sect. 12.4, based on
justifiers and endorsements, develop a set of rules for such a multi-resolution problem. Your
approach should not go beyond the MSS level of resolution if a pixel has a definite or likely
endorsement.

This application has been developed fully by Srinivasan (1990).

12.5 Consider how the perceived quality of data might be taken into account in a qualitative
reasoning system. In the justification and endorsement approach, endorsements made on the
basis of poor quality data, for example, may lead to the down-grading of an endorsement or
justification.
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Interpretation of Hyperspectral Image Data

13.1
Data Characteristics

The data produced by the imaging spectrometers of Appendix A is different from that
of multispectral instruments owing to the enormous number of wavebands recorded –
leading to the term hyperspectral. For a given geographical area imaged, the data
produced can be viewed as a cube, as shown in Fig. 13.1, having two dimensions
that represent spatial position and one that represents wavelength.

When displaying multispectral data, such as that from Landsat, both spatial di-
mensions are generally used, with three of the spectral bands written to the red, green
and blue colour elements of the display device, as described in Fig. 3.1. Sometimes,
careful band selection is required in this process to ensure the most informative
display, while on other occasions multispectral transformations, such as principal
components, are used to enhance the richness of the displayed data.

With hyperspectral data there are both challenges and opportunities presented in
creating data displays. First, choosing the most appropriate three channels to use is
not straightforward and, in any case, would invariably lead to substantial loss of the
spectral benefits offered by this form of data gathering. Nevertheless, unless spectral
transformations are employed, a set of three bands comparable to those used with
multispectral imagery are often adopted (near IR, red, green) for simple display of

Fig. 13.1. Hyperspectral “cube”
of image data such as recorded
by an imaging spectrometer
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Fig. 13.2. Line profile display created from hyperspectral data. a Transect through portion of
a hyperspectral image. b Greyscale display of spectral band (horizontally) versus position in
the image (vertically). c Coloured version of b

the data. Secondly, because of the large number of bands available, a two dimensional
display using one geographical dimension and the spectral dimension can be created
as shown in Fig. 13.2. Such a representation allows changes in spectral profiles with
position (either along track or across track) to be observed. Usually the greyscale is
mapped to colour to enhance the interpretability of the displayed data.

To understand much of what is to follow it is useful to envisage how recorded
hyperspectral data is affected by the presence of the atmosphere and the nature of
the solar spectrum.

Imagine the region being imaged has a uniform 100% spectral response – in other
words it will reflect all of the incident sunlight over all wavelengths, as depicted in
Fig. 13.3a; also assume that there is no atmosphere above the surface. A detector
capable of taking many spectral samples (say 200 or so) will then essentially record
the solar spectrum as shown. If the spectral resolution of the detector were sufficiently
fine then the recorded solar spectrum would include the Fraunhofer absorption lines,
resulting from the gases in the solar atmosphere (Slater, 1980).

Now suppose there is a normal terrestrial atmosphere in the path between the
sun, the surface and the detector. The spectrum recorded will be modified by the
extent to which the atmosphere selectively absorbs the radiation. There are well
known absorption features caused by the presence of oxygen and water vapour in
the atmosphere and these appear in the recorded data as depicted in Fig. 13.3b. Also,
the atmosphere scatters the solar radiation leading to the sky irradiance and path
radiance terms of Fig. 2.1. So for a start, if we wished to determine the (uniform)
spectrum of the ideally reflecting surface, the atmospheric absorption features need
to be removed, as does the shape of the solar spectrum and the effect of atmospheric
scattering.

Figure 13.3c suggests how the reflectance spectrum of a real surface might appear
before compensation for solar and atmospheric effects. The spectrum recorded is a
combination of the actual spectrum of the real surface, modulated by the effects of
the solar curve and the atmosphere. Section 13.3 addresses a range of techniques
used for removing those effects.
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Fig. 13.3. Formation of the reflectance spectrum of a given surface, and the biasing effects of
the solar spectral irradiance, atmospheric absorption and scattering

13.2
The Challenge to Interpretation

Recall from Chap. 3 that there are essentially two classes of analytical technique used
with multispectral data – photointerpretation and machine analysis (classification).
The former depends upon the use of image enhancement procedures for improving the
visual interpretability of image data whereas the latter is based usually on statistical
or other forms of numerical algorithms for labelling individual pixels.
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When the data has hundreds of spectral bands traditional image processing and
data handling techniques face difficulties. On the other hand, enough information is
readily available in the data to allow analysis based on a knowledge of spectroscopic
principles, as discussed in Sect. 13.4.1 following.

It is important to understand the limitations placed on the more traditional analyt-
ical approaches since those methods still find application with hyperspectral data, not
the least reason for which is the substantial investment in image processing software.
In the following the features which distinguish hyperspectral from multispectral data
are highlighted as a precursor to a discussion on the methods of analysis that can be
used with hyperspectral data, either modified or in original form. These differences
include data volume, redundancy and dimensionality.

13.2.1
Data Volume

Although data volume strictly does not pose any major data processing challenges
with contemporary computing systems it is nevertheless useful to examine the relative
magnitudes of data for say Landsat Thematic Mapper multispectral imagery and
AVIRIS hyperspectral data.

Clearly, the major differences to note between the two is the number of wavebands
(7 versus 224) and the radiometric quantisations used (8 versus 10 bits per pixel per
band). Ignoring differenences in spatial resolution, the relative data volumes, per
pixel, are 7 × 8 : 224 × 10 – i.e. 56 : 2240. Per pixel there are 40 times as many
bits therefore for AVIRIS as for TM data. Consequently, storage and transmission of
hyperspectral data are issues for consideration; suitable data compression techniques
are discussed in Sect. 13.7.

13.2.2
Redundancy

With 40 times as much data per pixel one is led to question whether 40 times as much
information can be obtained about the ground cover types being imaged. Generally,
of course, that is not the case – much of the additional data does not add to the
inherent information content for a particular application even though it often helps
in discovering that information. In other words it contains redundancies.

Much of the data we deal with in everyday life is highly redundant. Take the
English language as an example. If we remove certain letters from a word we can
often still understand what word is intended. For example rmte sesng would be
recognised by most people who read this book as remote sensing because there are
sufficient redundant letters that losing some is not critical to understanding. The
same is true with remote sensing data, especially that recorded by hyperspectral
sensors – there is often substantial overlap of information content over the bands
of data recorded for a given pixel. In such cases not all of the data is needed to
characterise a pixel properly, although redundant data may be different for different
applications.
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Fig. 13.4. a The correlation matrix for 196 wavebands 1 covering 400 nm to 2400 nm for the
AVIRIS Jasper Ridge image (white represents correlations of 1 or – 1, while black indicates
a correlation of 0). b The result of edge detecting the correlation matrix

In remote sensing data redundancy can take two forms: spatial and spectral.
Exploiting spatial redundancy is behind the spatial context methods of Sect. 8.8.
Spectral redundancy means that the information content of one band can be fully
or partly predicted from the other bands in the data. An example of this is seen in
Fig. 6.2b.

An interesting way to view spectral redundancy is to form the correlation matrix
for an image (or portion of an image) of interest; the correlation matrix can be derived
from the covariance matrix using (6.3). High correlations between band pairs indicate
high degrees of redundancy. Because there are so many bands with hyperspectral data
it is not practical to list all the correlations numerically, such as is done in Sect. 6.1.1.
Instead, it is better to display the inherent correlations (redundancies) pictorally as
shown in Fig. 13.4a, where a grey scale is used to represent levels of correlation. This
representation is often used with hyperspectral data and is a useful tool for identifying
correlations among bands when applying traditional processing tools as will be seen
later. An interesting by-product of representing the correlation (or covariance) matrix
in this form is that image processing procedures can be applied to it. For example its
block structure can be emphasised by using a simple edge detection filter to give the
result shown in Fig. 13.4b.

Means for removing inherent redundancy are often not readily apparent, al-
though techniques such as the principal components transformation assist in the
task since decorrelation followed by discarding low variance components amounts
to redundancy-reduction.

1 Overlapping bands result from the use of four individual spectrometers in the AVIRIS
instrument; these and the significant water absorption bands and bands which have very
small means (< 2) have been deleted from the original 224 bands, leaving 196 bands for
image processing.
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13.2.3
The Need for Calibration

The high spectral resolution of hyperspectral data sets means that fine atmospheric
absorption features will be detected and displayed as discussed in Sect. 13.1. In order
that they not be confused with absorption features of the ground cover type being
imaged it is important to account for them and “remove” them from the data.

Moreover, because the high spectral resolution suggests that recorded spectra
can be interpreted scientifically it is important also to remove the modulating effect
of the solar spectrum.

Neither of those effects has been particularly important in the processing and
analysis of multispectral data because of the absence of well defined absorption fea-
tures and the use of average solar irradiance over each of the recorded wavebands as
suggested in (2.1). With multispectral data only the effects of atmospheric scattering
and transmittance are corrected.

13.2.4
The Problem of Dimensionality:The Hughes Phenomenon

While recognised since the earliest attempts at machine processing of remotely sensed
image data (Swain and Davis, 1978), the Hughes phenomenon had not been of major
concern until the advent of hyperspectral data.

Briefly, a minimum ratio of the number of training pixels to number of spectral
bands is needed to ensure reliable estimates of class statistics are obtained when
training supervised classifiers; as the dimensionality of the data set increases the
minimum number of training pixels per class must be increased to preserve the
accuracy of the statistical estimates. Thus, adding more spectral bands, as in the case
of AVIRIS, MODIS and Hyperion, is not helpful unless more training pixels per
class are available. This turns out to be one of the major limitations in attempting
to apply traditional image classification procedures to hyperspectral data. A simple
example, based on determining a reliable linear separating surface, can be used to
illustrate the problem. Figure 13.5 shows three different training sets of data for the
same two dimensional (band) data set. The first (Fig. 13.5a) has only one pixel per
class.As seen, while a separating surface can be found it may not be accurate. Having
two training pixels per class as in the case of Fig. 13.5b provides a better estimate
of the separating surfaces, but it is not until we have many pixels per class, when
compared to the number of channels in the data, that we will obtain good estimates
of the parameters of the supervised classifier (Fig. 13.5c).

This is simply another way of looking at the material of Sect. 8.2.6. However,
rather than increase the number of training pixels for a given number of bands,
consider now the case of increasing the number of bands for a set number of training
pixels; the same problem is observed as illustrated in Fig. 13.6. We note that the
performance of the classifier is compromised by the poor estimates of the training
statistics beyond about ten features.
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Fig. 13.5. Illustration of the importance of enough training samples per class to ensure reliable
estimation of a separating surface. When too few pixels are used (a) good separation of the
training data is possible but the classifier performs poorly on the testing data. Large numbers
of (randomly positioned) training pixels generate a surface that also performs well for testing
data (c)

Fig. 13.6. The Hughes phenomenon, demonstrating logs of classifier performance (on testing
data) with increasing data dimensionality. This graph is the result of a four category classifi-
cation; the features indicated are the best sets of those sizes, selected using the Bhattacharyya
separability measure.
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13.3
Data Calibration Techniques

13.3.1
Detailed Radiometric Correction

As discussed in Sects. 2.1.1 and 13.2.3, the upwelling radiance measured by a sensor
results from incident solar energy scattered and reflected from the atmosphere and
earth surface. Detailed radiometric correction to obtain surface reflectance for hy-
perspectral data follows similar procedures as for the examples given in Sect. 2.2.1.
However, since hyperspectral data covers the whole spectral range from 0.4 to 2.4 µm,
including water absorption features, and has high spectral resolution, a more system-
atic process is generally required, consisting of three possible steps:

• Compensation for the shape of the solar spectrum. The measured radiances are di-
vided by solar irradiances above the atmosphere to obtain the apparent reflectances
of the surface.

• Compensation for atmospheric gaseous transmittances and molecular and aerosol
scattering. Simulating these atmospheric effects allows the apparent reflectances
to be converted to scaled surface reflectances.

• Scaled surface reflectances are converted to real surface reflectances after con-
sideration of any topographic effects. If topographic data is not available, real
reflectance is assumed to be identical to scaled reflectance under the assumption
that the surfaces of interest are Lambertian.

Procedures for solar curve and atmospheric modelling are incorporated in a number
of models (Gao et al., 1993), including Lowtran 7 (Low Resolution Atmospheric
Radiance and Transmittance), 5S Code (Simulation of the Satellite Signal in the
Solar Spectrum) and Modtran 3 (The Moderate Resolution Atmospheric Radiance
and Transmittance Model – see Anderson et al., 1995).

ATREM (Atmosphere REMoval Program, Gao et al., 1992), which is built upon
5S code, overcomes a difficulty with the other approaches in removing water vapour
absorption features in AVIRIS data; water vapour effects vary from pixel to pixel
and from time to time. In ATREM the amount of water vapour on a pixel-by-pixel
basis is derived from AVIRIS data itself, particularly from the 0.94 µm and 1.14 µm
water vapour features. A technique referred to as three-channel ratioing is developed
for this purpose (Gao et al., 1993). Figure 13.7 shows an example of a corrected
spectrum against the original measurements.
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Fig. 13.7. a Raw AVIRIS vegetation spectrum and b its correction based on ATREM.
(Reprinted from Gao et al., 1993 with permission from Elsevier Science)

13.3.2
Data Normalisation

When detailed radiometric correction is not feasible (for example, because the nec-
essary ancillary information is unavailable) normalisation is an alternative which
makes the corrected data independent of multiplicative noise, such as topographic
and solar spectrum effects. This can be performed using Log Residuals (Green and
Craig, 1985), based on the relationship between radiance (raw data) and reflectance:

xi,n = TiRi,nIn, i = 1, . . . K; n = 1, . . . N

where xi,n is radiance for pixel i in waveband n. Ti is the topographic effect, which
is assumed constant for all wavelengths. Ri,n is the real reflectance for pixel i in
waveband n. In is the (unknown) illumination factor, which is assumed independent
of pixel. K and N are the total number of the pixels in the image and the total number
of bands, respectively.

There are two steps which remove the topographic and illumination effects re-
spectively. xi,n can be made independent of Ti and In by dividing xi,n by its geometric
mean over all bands and then its geometric mean over all pixels. The result is not



368 13 Interpretation of Hyperspectral Image Data

identical to reflectance but is independent of the multiplicative illumination and topo-
graphic effects present in the raw data. The procedure is carried out logarithmically
so that the geometric means are replaced by arithmetic means and the final result
obtained for the normalised data is

log zi,n = log xi,n − log mn − log mi

= log xi,n − 1

N

N∑
n=1

log xi,n − 1

K

K∑
i=1

log xi,n

13.3.3
Approximate Radiometric Correction

As with multispectral data approximate correction is acceptable for some appli-
cations. One approach is the Empirical Line procedure (Roberts et al., 1985). Two
spectrally uniform targets in the site of interest, one dark and one bright, are selected;
their actual reflectances are then determined by field or laboratory measurements.
The radiance spectra for each target are extracted from the image and then mapped
to the actual reflectances using linear regression techniques. The gain and offset so-
derived for each band are then applied to all pixels in the image to calculate their
reflectances.

While the computational load is manageable with this method, field or labora-
tory data may not be available. The Flat Field method (Roberts et al., 1986), an
approximate correction technique that relies purely on the image data itself, is then
an alternative. This depends on locating a large, spectrally uniform area in an image
(such as sand or clouds) and finding its average radiance spectrum. It is assumed that
the shape and the absorption features presented in this spectrum are caused by solar
and atmospheric effects. The reflectance of each pixel is then obtained by dividing
the average radiance spectrum into the image spectrum of the pixel.

13.4
Interpretation Using Spectral Information

13.4.1
Spectral Angle Mapping

As will be seen in later sections, pixel labelling techniques in hyperspectral data
analysis, based on standard classification procedures, can often fail because of the
difficulty in obtaining reliable class definitions with data of such high dimension-
ality. One means for coping with the problem is to reduce the dimensionality by
some means. A candidate approach is to ignore the magnitudes of the pixel vec-
tors in hyperspectral space and attempt classification instead using just their angular
orientations as their sole describing characteristic.

In N dimensional multi-(hyper-)spectral space a pixel vector x has both magni-
tude (length) and an angle measured with respect to the axes that define the coordinate
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Fig. 13.8. a Representing pixels by their angles from the band axes. b Segmenting the multi-
spectral space by angle

system of the space (see Appendix D). In the spectral angle mapper (SAM) tech-
nique for identifying pixel spectra only the angular information is used. Figure 13.8a
shows a two dimensional (ie. two band) example where spectra are characterised
entirely by their angles from the horizontal axis. The spectra can be distinguished
from each other provided the angles are sufficiently different. Using this concept,
angular decision boundaries can be set up (from library information or training data)
that segment the space as shown in Fig. 13.8b. Spectra are then labelled according
to the sector within which they fall.

Clearly the SAM technique will fail if the vector magnitude is important in
providing discriminating information, which it will in many instances. However, if
the pixel spectra from the different classes are well distributed in the space there is
a high likelihood that angular information alone will provide good separation. The
technique functions well in the face of scaling noise. Details for implementing SAM
will be found in Kruse et al. (1993).

13.4.2
Using Expert Spectral Knowledge and Library Searching

Having a well-defined spectrum means that a scientific approach to interpretation
can in principle be carried out, much as a sample is identified using spectroscopy in
the laboratory through a knowledge of spectral features.

Absorption features (seen as localised dips) are often observed in the reflectance
spectra of specific minerals provided sufficient spectral resolution is available. It
is those absorption features that provide the information needed for identification.
They are sometimes referred to therefore as “diagnostically significant features”.
Characterisation and thus automatic detection of such absorption features, when
they occur, is of particular interest in hyperspectral image recognition.
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Fig. 13.9. Illustration of the importance of defining the continuum in a spectrum before
measuring the properties of diagnostically significant features

Absorption features can be characterised by their locations (bands), relative
depths and widths (full width at half the maximum depth), and used in pixel identi-
fication.

To make that possible it is important to separate the absorption features from
the background continuum of the spectrum that results from light transmission and
scattering, as against the absorption features themselves that are due to photon in-
teraction with the atomic structure of the chemicals present in the material being
observed. The importance of continuum removal can be seen in Fig. 13.9. Often the
background will not be “horizontal”, so definition of the depth of the feature can
then be ambiguous. If the continuum in the vicinity of the feature is defined by a line
of best fit between those portions of the spectrum either side of the feature then a
reasonably consistent measure of band depth can be established.

Usually, a complete spectrum is divided into several spectral regions (often under
the guidance of an expert) and absorption features are detected in each of the regions.
An unknown pixel is then labelled as belonging to a given class if the properties of
its diagnostically significant absorption features match those of the spectrum for that
class held in a spectral feature library.

A complication that can arise with library searching in general, and with seeking
to match absorption features in particular, is that mixtures are often encountered,
and some materials have very similar spectral features. An excellent treatment of the
complexities that arise, and how they can be handled, is given in Clark et al (2003).
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13.4.3
Library Searching by Spectral Coding

Because the pixel spectrum is so well specified and can be corrected for atmo-
spheric and solar distortions, spectral comparison is possible – either with previously
recorded data or with laboratory spectra – for pixel identification. The reference spec-
tra are usually stored in a spectral library.

It is clear that the searching and matching processes must be efficient in such
a procedure. Full spectral matching using original radiometric data is not practi-
cal. However, given the degree of redundancy spectrally and radiometrically that
one would anticipate with the data recorded by an imaging spectrometer, coding
techniques can be employed to represent a pixel spectrum in a simple and effective
manner so that fast library searching and matching can be achieved.

13.4.3.1
Binary Spectral Codes

A simple binary code for a reflectance spectrum can be formed according to

h(n) = 0 if x(n) ≤ T

1 otherwise n = 1, . . . N

where x(n) is the brightness value of a pixel in the nth band, T is a user specified
threshold for forming the binary code, and h(n) is the resulting binary code symbol
for the pixel in the nth spectral band. Usually T is chosen as the average brightness
value of the spectrum. Figure 13.10 demonstrates a typical spectrum encoded in
this manner. Instead of using the average brightness of the complete spectrum as a
threshold, the local average over the adjacent channels could be employed.

Such a simple binary code will not always provide reasonable separability be-
tween the spectra in a library, nor will it guarantee that a measured spectrum will
match with either only one or a small number of library spectra. Consequently, more
sophisticated codes may need to be adopted. For example, more than one threshold
could be used. With three thresholds a two binary digit code for the brightness of a
pixel will be created:

h(n) = 00 if x(n) ≤ T 1
01 if T 1 < x(n) ≤ T 2
112 if T 2 < x(n) ≤ T 3
10 if T 3 < x(n).

The mean brightness over the spectrum can be one threshold; the other two are chosen
above and below this value.

2 The third level code word is chosen as 11 rather than 10 so that there is only one binary
digit difference between levels.
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Fig. 13.10. Formation of a simple binary code for an AVIRIS spectrum
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Spectral slope can also be used as part of a code. One binary representation of
the local slope, s(n), at each waveband is:

s(n) = 0 if (x(n + 1) − x(n − 1)) ≤ 0
1 otherwise n = 1, . . . N

Another variation is to develop separate codewords for different regions of the spec-
trum. The resulting codes accommodate spectral coarse structure better. Uniformly
spaced regions could be used or perhaps those regions of the spectrum suspected as
being most significant in differentiating cover types could be adopted. The latter is
based upon the knowledge that in different wavelength ranges the reflectance spec-
trum is dominated by different physical characteristics of the surface being imaged.
Figure 13.11 shows an example of coding on selected bands with 3 thresholds.

13.4.3.2
Matching Algorithms

Comparison of binary coded spectra can be made by measuring the Hamming dis-
tance between them, defined as

DH (hi, hj ) =
L∑

l=1

(hi(l) ⊕ hj (l))

where hi and hj are two spectral codewords of length (i.e. number of bits) L. For
simple thresholding, L = N , the number of bands. L = 2N if slope coding is also
used or three thresholds are employed. ⊕ denotes the exclusive OR operator. It is
applied on a bit-by-bit basis for a pair of binary code words and records a difference as
‘1’and no difference as ‘0’. For example, the exclusive OR of two spectral codewords
01110011 and 00101011 becomes 01011000. Hamming distance is then calculated
by summing the number of times the binary digits are different. In this example, the
Hamming distance is 3. If the distance is within a user-specified threshold, the two
pixels are identified as belonging to the same class. When one, say hi(n), is a class
signature code, the comparison leads to labelling for pixel j .

13.5
Hyperspectral Interpretation by Statistical Methods

13.5.1
Limitations of Traditional Thematic Mapping Procedures

Traditional supervised and unsupervised classification techniques will require very
long processing times for hyperspectral data because of the dependence on the num-
ber of wavebands (see Sects. 8.5 and 9.3.5). A more serious problem, however, is the
need to estimate class signatures – i.e. the mean vector and covariance matrix – when
using algorithms, such as maximum likelihood, based on second order statistics. The
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Fig. 13.11. Formation of a binary code using three thresholds, chosen differently in different
regions of the spectrum
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difficulty lies in the small number of available training pixels per class compared with
the number of wavebands used, and is related directly to the Hughes phenomenon of
Sect. 13.2.4. If too few training samples are used then the class model may be very
accurate for the training data and classification accuracy on training data can be very
high. However, classification accuracy on testing data will be poor. In this case, the
classifier is overtrained and the statistics estimated are unreliable. This difficulty is
analogous to that of curve fitting illustrated in Sect. 2.4.1.4. To avoid the problem of
unreliable class statistics and thus poor classifier performance the number of train-
ing pixels per class should be at least ten times the dimensionality of the data, with
desirably 100 times as discussed in Sect. 8.2.6.

The following sections treat some techniques developed for dealing with the
small training set problem.

13.5.2
Block-based Maximum Likelihood Classification

In general, correlations between neighbouring bands in hyperspectral data sets are
higher than for bands further apart and highly correlated bands appear in groups. As a
result, the correlation matrix is roughly block diagonal in form as shown in Fig. 13.4,
in which a greyscale is used to represent the degree of correlation. Figure 13.12
shows the data of Fig. 13.4a but, for purposes of illustration, with the correlations
averaged within identifiable blocks demonstrating the strongly block diagonal form
of the correlation and thus the covariance matrix. Those blocks can be identified
visually or with the assistance of edge detection on the correlation matrix as shown
in Fig. 13.4b.

Now assume that the low off-diagonal correlations are zero. The matrix is then
fully block diagonal as depicted in general terms in Fig. 13.13. By assuming that

Fig. 13.12. Average correlations
within diagonal blocks and within
selected off-diagonal segments of
Fig. 13.4 illustrating the pseudo block
diagonal nature of the matrix
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Fig. 13.13. Assumed block diagonal
form of the correlation and thus covari-
ance matrix

the subgroups of bands within each block are independent of those in other sub-
groups, maximum likelihood classification can then be applied to each subgroup
independently.

Noting that the block diagonal form of the correlation matrix leads to a covariance
matrix of the same structure, the discriminant function becomes the sum of the
logarithmic discriminant values of the individual groups of wavebands (blocks):

gi(x) = −
K∑

k=1

{ln |Σik| + (xk − mik)
tΣ−1

ik (xk − mik)}

i = 1, . . . M; k = 1, . . . K (13.1)

In (13.1) the dimensions of x, mi , and Σi are reduced to nk(nk < N), the size of
the kth subgroup of bands, so that advantage can be taken of the corresponding
quadratic reduction in classification time (see Sect. 8.5). Also, the number of training
pixels required per class for reliable statistics, determined by the size of the biggest
subgroup, is much smaller than when all bands are used.

The sizes of subgroups to use are generally guided by observation of the bound-
aries of the high correlation blocks along the principal diagonal of a correlation
matrix, which will be different for different images.

If training data is limited some relatively high correlations may have to be ignored.
However, this approach will still be better than, say, minimum distance classification
(often used when training pixels are limited – see Sect. 8.3.1) since at least some
correlations are taken into account.

With some data sets, highly correlated blocks of bands will occur away from
the diagonal. They can be moved onto the diagonal by reordering the bands before
the correlation matrix is computed. Such an operation makes no difference to the
information contained in the matrix or to subsequent image analysis operations.
However, it does mean that a reconstructed pixel spectrum will have some bands out
of order in the sequence of wavelengths.
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Table 13.1. Re-ordered and original blocks of bands

Group Number Reordered Band Number Original Band Number

1 1–34 2–35

2 35–38 148–151

3 39–77 153–191

4 78–105 101–128

5 106–113 130–137

6 114 129

7 115 152

8 116–135 74–93

9 136–153 56–73

10 154–173 36–55

11 174 1

12 175–181 94–100

13 182–191 138–147

14 192–196 192–196

A simple and effective means for re-ordering the bands is to consider the first set
of rows in the image of the correlation matrix of Fig. 13.4a corresponding to the first
highly correlated (diagonal) block of bands. That block covers bands 2–35 in this
example. Moving across those 34 rows as a single group, blocks of similar correlation
are identifiable (they are correlations of the respective bands with bands 2–35). If
we average the correlations in those blocks, the graph of Fig. 13.14a is produced. If
we then re-arrange the bands as shown in Fig. 13.14b, by moving the more highly
correlated blocks of bands to the left and the less correlated blocks to the right then
that has the effect of re-arranging the blocks of bands in the correlation matrix such
that the lower correlated blocks are shifted towards the off-diagonal corners and the
more highly correlated blocks are moved to the diagonal as shown in Fig. 13.14c.

For interest, Table 13.1 shows how the band blocks for this example have been
re-ordered.

13.6
Feature Reduction

Given that hyperspectral data is often highly redundant, feature reduction will be
an important preprocessing step to image analysis. However, feature reduction itself
for hyperspectral data is a time consuming process and feature extraction via linear
transform relies, as with classification, on good estimates of class statistics. To solve
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Fig. 13.14. a Average correlations
of the blocks of bands evident
horizontally in Fig. 13.4a in a
strip corresponding to bands 2–35.
b Blocks of bands re-ordered to
rank the average correlations from
highest to lowest. c Correlation
matrix generated with the reordered
band positions

this problem the block-based technique presented in Sect. 13.5.2 can be extended to
deal with hyperspectral feature reduction.

13.6.1
Feature Selection

Separability measures, such as the JM distance of (10.5) and (10.6), provide metrics
of the average distance between two class density functions, and are thus used to find
the best subsets of features.
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When the complete set of bands is treated as K independent blocks as discussed
in Sect. 13.5.2, the JM distance or other separability measures can be simplified;
(10.6) for example becomes

B =
K∑

k=1

{
1

8
(mik − mjk)

t

{
Σik + Σjk

2

}−1

(mik − mjk)

+1

2
ln

{ |(Σik + Σjk)/2|
|Σik|1/2|Σjk|1/2

}}

Thus the Bhattacharyya distance between a class pair is the sum of the distances
computed for each block (group of bands).

13.6.2
Spectral Transformations

The principal components transformation, which uses global statistics to determine
the transformation operation, is sometimes used in multispectral data analysis as a
tool for feature reduction. The main concern in employing it with hyperspectral data
is its high computational load.

Implementing the transformation consists of two tasks: eigenanalysis to generate
the transformation matrix G in (6.4), and pixel by pixel linear transformation. The
former requires an insignificant amount of work. However, the latter is a time con-
suming process which requires N × N multiplications and N × (N − 1) additions
per pixel. Moreover, the process can be biased by high variance bands. For example,
the data recorded by AVIRIS is affected in shape by the solar spectrum as shown in
Fig. 13.3c. This indicates that a spectral weighting is imposed. As a result, the vari-
ances of the spectral bands in the short wavelength region are much higher than the
remaining bands if the data is not calibrated. A conventional principal components
transform will be dominated, therefore, by the visible and near infrared bands.

When the original bands are highly correlated, the principal components trans-
form works effectively, while for poorly correlated data there may be little change
after application of the transform. Recall, for hyperspectral data, high correlations
generally occur in blocks. If the conventional principal components transform is mod-
ified so that the low correlations between the highly correlated blocks are avoided,
the efficiency of the transformation will be improved while the results should be
little affected. This leads to the formation of a segmented principal components
transformation.

Figure 13.15 shows the process schematically. The complete data set is first par-
titioned into K subgroups of highly correlated bands. Denote by n1, n2, . . . , nK the
number of bands in subgroups 1, 2 . . . , K , respectively. The principal components
transformation is now conducted separately on each subgroup of data. Feature se-
lection on each of the transformed data sets is carried out by either making use of
variance information in each component as is common in multispectral data process-
ing, or by pursuing single band separabilities (see Sect. 13.6.3). The features selected
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Fig. 13.15. Schematic representation of segmenting the principal components transformation
for feature reduction

can be regrouped and transformed again to compress the data further. Generally, the
steps can be repeated until the required data reduction ratio is achieved for classifi-
cation or storage purposes. For colour composite display the most informative three
features will be used.

Segmenting the principal components transform in this manner requires nk × nk

multiplications for each subgroup and thus a total of
K∑

k=1
n2

k multiplications for each

pixel vector in contrast to N × N multiplications for each pixel vector if trans-
formation over the full set of bands is performed. As an example, 2/3 of the total
time is saved when three subgroups of uniform size are used (i.e., K = 3, and
n1 = n2 = n3 = N/3).

So long as all the new transformed components are kept, there is no variance
(information) loss by transforming sub-vectors separately.When the new components
obtained from each segmented transform are gathered and transformed again, the
resulting data variance and covariance are identical to those for the conventional
principal components transform.

The segmentation idea can be extended to canonical analysis. The complete set of
bands is segmented into K groups. Then conventional canonical analysis is applied
to each group, with up to M − 1 best features selected from each transformed set,
where M is the number of classes. By so doing, class statistics involving the complete
set of bands are no longer needed (which otherwise presents the difficulties under
limited training pixels discussed in Sect. 13.5.1).
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13.6.3
Feature Selection from Principal Components Transformed Data

For original, untransformed data, feature selection is based on pairwise separability
measures such as the Bhattacharyya distance (10.6). If the covariance matrices, Σi

and Σj , are diagonal (following transformation) then (10.6) becomes

B =
N∑

n=1

⎡
⎣ (mi(n) − mj(n))2

4(σ 2
i (n) + σ 2

j (n))
+ 1

2
ln

(σ 2
i (n)/2 + σ 2

j (n)/2)√
σ 2

i (n)σ 2
j (n)

⎤
⎦

where mi(n), σ 2
i (n) represent, respectively, the mean and variance of the nth band

for class i. This suggests that when the data has low correlation (close to zero), fol-
lowing transformation class separability is determined largely by individual feature
separabilities and can be estimated by summing those single feature separabilities.
Therefore, single band separability can be used as an approximate measure for feature
selection from features that are poorly correlated.

Generally, high data variance is usually needed for separating different classes in
an image and, thus, higher order principal components with small variances provide
little significant information. Therefore, it is possible simply to select the first few
high variance features and ignore the higher ordered principal components. However,
it is important to recognise that some features selected in this way may be misleading.
For example, original noisy bands will lead to some principal components with high
variance but low separability.

13.7
Regularised Covariance Estimators

Another approach that can be used to generate acceptable approximations to class
covariance matrices is to make use of a process called regularisation, in which the
poorly estimated class conditional covariance matrices are mixed with matrices that
are known to be better determined, even if they are not class specific.

Let Σi be the estimate of the class covariance matrix obtained from the available
training data for the class ωi . If there are not sufficient training samples available Σi

will be a poor estimate. Let ΣM be the covariance matrix computed from the full
set of training samples – in other words it will be a global covariance matrix which
reflects the scatter of the complete set of training data. Because this is based on a
greater number of samples it is likely to be more accurate, for what it is, than the set
of Σi .

Then an approximation that can be used for the class conditional covariance
matrix is

Σ
approx
i = αΣi + (1 − α)ΣM (13.2)

where α is a mixing parameter. Often diagonal versions of one of the constituent ma-
trices would be used in (13.2), particularly for the original class covariance estimate.
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Thus more often (13.2) would be

Σ
approx
i = α diag Σi + (1 − α)ΣM (13.3a)

or

Σ
approx
i = α trace(Σi)I + (1 − α)ΣM (13.3b)

The parameter α needs to be determined to ensure that the approximation is as good
as possible. One way to do that is to vary α and then see how well the covariance
estimate performs, either with the training data set or with a set of testing data. Often
the Leave One Out method of Sect. 11.5.2 is used for this purpose.

Another covariance estimator commonly used is (Landgrebe, 2003)

Σ
approx
i = (1 − α) diag Σi + αΣi 0 ≤ α ≤ 1

= (2 − α)Σi + (α − 1)ΣM 1 < α ≤ 2

= (3 − α)ΣM + (α − 2)diagΣM 2 < α ≤ 3 (13.4)

Again the optimum value for α would be found by using the Leave One Out method
on the training data.

It is interesting to examine the actual nature of this last estimate for some specific
values of α, noting the nature of the class conditional distributions that result, and
the likely forms of the discriminant functions. For example:

• For α = 0, Σ
approx
i = diag Σi , meaning that each class is represented by the

diagonal elements of its class covariance matrix, and that cross correlations are
ignored. Consequently, the classes are assumed to be distributed hyperelliptically
with axes parallel to the spectral axes. A linear decision surface will result.

• For α = 1, Σ
approx
i = Σi , meaning that each class is represented by its actual

class conditional covariance matrix, giving quadratic decision surfaces between
the classes. This will give full multi-normal maximum likelihood classification.

• For α = 2, Σ
approx
i = ΣM , meaning that all classes are assumed to have the

same covariance matrix (equivalent to the global covariance), again generating
linear decision surfaces.

• For α = 3, Σ
approx
i = diag ΣM , meaning again that all classes have the same

covariance matrix, but in this case it consists just of the diagonal terms of the
global covariance matrix. All class covariances will be identically hyperelliptical
with axes parallel to the spectral axes, resulting in linear decision surfaces.

13.8
Compression of Hyperspectral Data

Owing to the large data volumes involved, storage and transmission of data from
imaging spectrometers benefit from the application of procedures that will reduce
data volume without substantially affecting the information content. Those proce-
dures are generally in the form of codes that represent the spectra in reduced form.
The binary codes of Sect. 13.4.3 are typical of codes that could be used, although
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with such reductions in the spectra significant information loss (allowing the spectra
to be used over a large number of applications) could be expected.

More sophisticated codes minimise information loss while compressing the data.
The principal components transformation is an example. The higher order compo-
nents with low variance can be discarded without significant information loss and
yet with a reduction in storage requirement in proportion to the number of bands
discarded. Also, the original spectral or image data can be reconstructed from the
reduced representation (using an inverse principal components transform) although
with loss of information. Sometimes the information loss is referred to as distortion
since the reconstructed data will differ, depending on the level of loss of detail, from
the original.

An alternative transformation widely used in the television and video industry is
the Discrete Cosine Transform (Rao and Yip, 1990). The DCT is similar in principle
to the Discrete Fourier Transform of Sect. 7.7, but with cosine expansion functions
instead of complex exponentials as seen in (7.16).

If the user can tolerate substantial amounts of distortion then significant compres-
sion of remote sensing imagery is possible; figures as high as 100 times reduction in
volume have been reported, but one is then led to question the integrity of the com-
pressed data. Generally, those compression schemes that allow the original image to
be reconstructed without error (so-called lossless compression algorithms) will give
compression ratios of about 2 to 3.

A compression scheme well matched to the needs of remote sensing is referred
to as vector quantisation, based upon the use of a so-called code book. That book
contains a number of representative pixel vectors (for example class means) that
could be obtained from training data, or possibly could even be prototypical reference
spectra. Each code book vector is given a label (such as a number or even a class
symbol).

Now imagine an image has to be transmitted over a telecommunications channel.
If the spectrum matches exactly one of the stored spectra then only the label need
be transmitted. The receiver also has a copy of the code book and can retrieve the
spectrum in question through matching the label. If the spectrum does not match a
code book entry exactly then transmitting the label of the nearest match will incur an
error. Whether that error is acceptable, or whether a correction needs to be transmitted
with the label of closest match, will depend on the application. The efficacy of the
scheme depends upon how well the code book represents the range of pixel vectors
in the image. A good code book will give rise to small differences (errors) between
code book entries and pixel vectors to be transmitted. Such small differences can be
encoded using a small number of bits (substantially smaller than the number of bits
in the original pixel vector), so that good data compression is achieved.

A simple illustration is given inTable 13.2 in which 10 SPOT multispectral vectors
are to be sent over a channel. Ordinarily, with each band represented by 8 bits, the
ten pixels require 10 × 3 × 8 = 240 bits to be transmitted. However, recognising
there are two clusters in the data and using the cluster means as code book vectors,
it is possible to represent each of the pixels to be transmitted by their difference
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Table 13.2. Simple illustration of vector quantisation

(error) from the nearest mean. There are 8 distinct differences (between 0 and 7);
they can be distinguished from each other (including sign) by allowing a 4 bit word
for coding them. Thus the number of bits then to be transmitted is 10 × 3 × 4 = 120
bits, plus one bit per pixel to indicate the code book vector label (one bit is enough
to represent just two labels – i.e. 0 or 1) and 2 × 3 × 8 = 48 bits to transmit the code
book beforehand. Thus the vector quantised scheme requires 120 + 10 + 48 = 178
bits for the 10 pixels. The “compression ratio” is 240/178 = 1.35 with the ability to
reconstruct the original pixel vectors without loss (distortion).

Further compression of the data is possible by using a more efficient coding pro-
cess on the errors. Rather than simply allocating (in this example) 3 bits per difference
(based on the observation that there are 8 different errors to transmit) shorter code
words (in terms of numbers of bits) can be ascribed to the most commonly encoun-
tered errors (in this example 1 and 2). Details of this refinement, vector quantisation
in general and the overall issue of compression in remotely sensed data can be found
in Ryan and Arnold (1997a,b).
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13.9
Spectral Unmixing: End Member Analysis

A challenge that has faced interpreters throughout the history of remote sensing has
been the need to handle mixed pixels – i.e. those pixels that represent a mixture of
cover types or information classes. Several early studies attempted to resolve the
proportions of pure cover types within mixed pixels by assuming that the measured
radiance is a linear combination of the radiances of the “pure” constituents in each
of the imaging wavebands used.

With low resolution (multispectral) data the approach generally did not meet with
a great deal of success because most cover types are not well differentiated in the
small number of wavebands used. However, with hyperspectral data, the prospect of
uniquely characterising a vast number of earth cover types, and thus differentiating
them from each other spectroscopically, suggests that the mixing approach should
be re-visited as a means for establishing mixture proportions of pure cover types in
pixels. This has particular relevance in minerals mapping where abundance maps for
minerals of interest can then be produced based upon the proportions determined for
all pixels in a given image.

The process can be developed mathematically in the following manner. Assume
there are M pure cover types in the image of interest. In the nomenclature of mixing
models these are referred to as endmembers. Let the proportions of the various
endmembers in a pixel be represented by fm, m = 1, . . . M . These are the unknowns
in the process which we wish to find, based on observation of the hyperspectral
reflectance of the pixel.

Let Rn, n = 1, . . . N be the observed reflectance of the pixel in the nth spectral
band of the sensor and an,m be the spectral reflectance in the nth band of the mth

endmember. Then we assume

Rn =
M∑

m=1

fman,m + ξn n = 1, . . . N

where ξn is an error in band n. The equation says that the observed reflectance in each
band is the linear sum of the reflectances of the endmembers; the extent to which
that does not work exactly in a given situation is encapsulated in the error term.

An assumption that allows us to use linear mixing in this form is that the incident
energy is scattered only once to the sensor from the landscape and does not undergo
multiple scatterings among, for example, foliage components.

The above mixing equation can be expressed in matrix form as

R = Af + ξ

where f is a column vector of size M, R and ξ are column vectors of size N and A

is an N × M matrix of endmember spectral signatures (by column).
Spectral unmixing, as the process is called, involves finding a set of endmember

proportions that will minimise the error vector ξ . On the assumption that the correct
set of endmembers has been chosen the problem then becomes one of solving the
simpler equation
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R = Af

Normally there are more equations than unknowns so that simple inversion of the
last equation to find the vector of mixing proportions is not possible. Instead, a least
squares solution is found by using the pseudo inverse

f = (AtA)−1AtR .

It should be mentioned that there are two constraints that the mixing proportions of
the endmembers are expected to satisfy. The first is that the proportions should sum
to unity and the second is that they should all be non-negative:

M∑
m=1

fm = 1

0 ≤ fm ≤ 1 for all m

As discussed by Gross and Schott (1998) these constraints are sometimes violated
if the endmembers are derived from average cover type spectra or the endmember
selection is poor.
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Problems

13.1 The block based maximum likelihood classification scheme of Sect. 13.5.2 requires deci-
sions to be taken about what blocks to use. From your knowledge of the spectral responses of
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the three common ground cover types of vegetation, soil and water, recommend an acceptable
set of block boundaries that might always be used with AVIRIS data. You may wish also to
take note of the major water absorption features in AVIRIS spectra as seen in Fig. 1.9.

13.2 Using the results of question 1 or otherwise discuss how the canonical analysis transfor-
mation might take advantage of partitioning the covariance matrices into blocks.

13.3 Does partitioning the covariance matrix into blocks assist minimum distance classifica-
tion?

13.4 (a) Consider the block based approach to principal components analysis as developed in
Sect. 13.6.2. Suppose several stages of transformation without feature reduction are used as
depicted in Fig. 13.15. Prove that the overall data variance after the final transformation is the
same as that generated had a single stage principal components transform been carried out.
(b) (This requires significant matrix analysis skills) As in part (a), but, a principal components
transform without segmentation is finally performed on the data which are obtained after
several stages of segmented principal components transform (without feature reduction) are
used. Prove that the data variance of each feature is the same as that generated had conventional
PCT been carried out for the original data.

13.5 Consider the simple binary coding scheme (with one threshold) developed in
Sect. 13.4.3.1 and illustrated in Fig. 13.10. How many distinct codes are possible for AVIRIS,
TM and SPOT HRV data sets? Why would binary codes not be a sufficient representative form
for SPOT and MSS data?

13.6 Suppose a particular image contains just two cover types – vegetation and soil. A pixel
identification exercise is carried out to attempt to attach either a soil or vegetation label to
each pixel and thereby come up with an estimate of the proportion of vegetation in the region
being imaged. From homogeneous regions of the image it is possible easily to label pure soil
and pure vegetation pixels. Clearly the image also contains a number of mixed pixels and so
end member analysis is considered as a means for resolving their soil/vegetation proportions.
Is the additional work justified if the approximate proportion of vegetation to soil is 1:100,
50:50 or 100:1?

13.7 Explain the concept of transmittance and name the main gases which cause markedly
low atmospheric transmittance at wavelength(s) between 400–2400 nm.

13.8 Describe briefly spectral library searching techniques, stating why they are feasible to
use with imaging spectrometer data and noting their advantages over statistical classification
methods.

13.9 The principal components transform and the Bhattacharyya distance can both be used
for band reduction. Comment on the main differences between the two methods for this
application.

13.10 Two-threshold coding is normally not recommended. Explain why.

13.11 When three-threshold coding is used, make suggestions on how to define the three
thresholds, particularly the upper and lower thresholds if the mean brightness value over the
spectrum is used as the middle threshold.

13.12 In the spectral angle mapper technique, the angle of a pixel vector in the spectral space
needs to be determined (Fig. 13.8). Write down the formula for calculating the angle for the
general case with N bands.



Appendix A
Missions and Sensors

This appendix contains descriptive and technical information on satellite and aircraft
missions and the characteristics of their sensors. It commences by looking briefly at
those programs intended principally for gathering weather information, and proceeds
to missions for earth observational remote sensing, including hyperspectral and radar
platforms and sensors.

Sufficient detail is given on data characteristics so that implications for image
processing and analysis can be understood. In most cases mechanical and signal
handling properties are not given, except for a few historical and illustrative cases.

A.1
Weather Satellite Sensors

A.1.1
Polar Orbiting and Geosynchronous Satellites

Two broad types of weather satellite are in common use. One is of the polar orbiting,
or more generally low earth orbit, variety whereas the other is at geosynchronous
altitudes. The former typically have orbits at altitudes of about 700 to 1500 km
whereas the geostationary altitude is approximately 36,000 km (see Appendix B).
Typical of the low orbit satellites are the current NOAA series (also referred to
as Advanced TIROS-N, ATN), and their forerunners the TIROS, TOS and ITOS
satellites. The principal sensor of interest from this book’s viewpoint is the NOAA
AVHRR. This is described in Sect. A.1.2 following.

The Nimbus satellites, while strictly test bed vehicles for a range of meteoro-
logical and remote sensing sensors, also orbited at altitudes of around 1000 km.
Nimbus sensors of interest include the Coastal Zone Colour Scanner (CZCS) and the
Scanning Multichannel Microwave Radiometer (SMMR). Only the former is treated
below.
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Geostationary meteorological satellites have been launched by the United States,
Russia, India, China, ESA and Japan. These are placed in equatorial geosynchronous
orbits.

A.1.2
The NOAA AVHRR (Advanced Very High Resolution Radiometer)

TheAVHRR has been designed to provide information for hydrologic, oceanographic
and meteorologic studies, although data provided by the sensor does find application
also to solid earth monitoring.An earlier version of theAVHRR contained four wave-
length bands. Table A.1 however lists the bands available on the current generation
of instrument (NOAA 17).

Table A.1. NOAA advanced very high resolution radiometer

Spatial resolution 1.1 km at nadir
Dynamic range 10 bit
Swath width 2399 km
Spectral bands:

channel 1 0.58 − 0.68 µm
channel 2 0.725 − 1.0 µm
channel 3 3.55 − 3.93 µm
channel 3a 1.58 − 1.64 µm
channel 4 10.3 − 11.3 µm
channel 5 11.5 − 12.5 µm

A.1.3
The Nimbus CZCS (Coastal Zone Colour Scanner)

The CZCS was a mirror scanning system, carried on Nimbus 7, designed to mea-
sure chlorophyll concentration, sediment distribution and general ocean dynamics
including sea surface temperature. Its characteristics are summarised in Table A.2.

Table A.2. Nimbus coastal zone colour scanner

Spatial resolution 825 m at nadir
Dynamic range 8 bit
Swath width 1566 km
Spectral bands:

channel 1 0.433 − 0.453 µm
channel 2 0.510 − 0.530 µm
channel 3 0.540 − 0.560 µm
channel 4 0.660 − 0.680 µm
channel 5 0.700 − 0.800 µm
channel 6 10.5 − 12.5 µm
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A.1.4
GMS VISSR (Visible and Infrared Spin Scan Radiometer)
and GOES Imager

Geostationary meteorological satellites such as GMS (Japan) and the earlier GOES
(USA) are spin stabilized with their spin axis oriented almost north-south. The pri-
mary sensor on these, the VISSR, scans the earth’s surface by making use of the
satellite spin to acquire one line of image data (as compared with an oscillating mir-
ror in the case of AVHRR, CZCS, MSS and TM sensors), and by utilizing a stepping
motor to adjust the angle of view on each spin to acquire successive line of data
(on orbiting satellites it is the motion of the vehicle relative to the earth that dis-
places the sensor between successive scan lines). The characteristics of the VISSR
are summarised in Table A.3.

The most recent GOES environmental satellites are 3 axis stabilised and carry a
GOES Imager with characteristics as shown in Table A.3.

Table A.3. VISSR and GOES Imager characteristics

Band Spatial resolution Dynamic range
(µm) at nadir (km) (bits)

VISSR 0.55 – 0.90 1.25 6
(visible)

6.7 – 7.0 5 8
10.5 – 11.5 5 8
11.5 – 12.5 5 8
(thermal infrared)

GOES Imager 0.55 – 0.75 1 10
3.80 – 4.00 1 10
6.50 – 7.00 1 10

10.20 – 11.20 1 10
11.50 – 12.50 1 10

A.2
Earth Resource Satellite Sensors
in the Visible and Infrared Regions

A.2.1
The Landsat System

The Landsat earth resources satellite system was the first designed to provide near
global coverage of the earth’s surface on a regular and predictable basis.

The first three Landsats had identical orbit characteristics, as summarised in
Table A.4. The orbits were near polar and sun synchronous – i.e., the orbital plane
precessed about the earth at the same rate that the sun appears to move across the
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Table A.4. Landsat 1, 2, 3 orbit characteristics

face of the earth. In this manner data was acquired at about the same local time on
every pass.

All satellites acquired image data nominally at 9:30 a.m. local time on a descend-
ing (north to south) path; in addition Landsat 3 obtained thermal data on a night-time
ascending orbit for the few months that its thermal sensor was operational. Fourteen
complete orbits were covered each day, and the fifteenth, at the start of the next day,
was 159 km advanced from orbit 1, thus giving a second day coverage contiguous
with that of the first day. This advance in daily coverage continued for 18 days and
then repeated. Consequently complete coverage of the earth’s surface was given,
with 251 revolutions in 18 days.

The orbital characteristics of the second generation Landsats, commencing with
Landsats 4 and 5, are different from those of their predecessors. Again image data
is acquired nominally at 9:30 a.m. local time in a near polar, sun synchronous orbit;
however the spacecraft are at the lower altitude of 705 km. This lower orbit gives a
repeat cycle of 16 days at 14.56 orbits per day. This corresponds to a total of 233
revolutions every cycle. Table A.5 summarises the Landsat 4, 5 orbit characteristics.
Unlike the orbital pattern for the first generation Landsats, the day 2 ground pattern
for Landsats 4 and 5 is not adjacent and immediately to the west of the day 1 orbital
pattern. Rather it is displaced the equivalent of 7 swath centres to the west. Over
16 days this leads to the repeat cycle.

Landsat 6, launched in 1993, was not successfully placed in orbit and was lost
over the Atlantic Ocean. Landsat 7 is a similar satellite in all respects.

Whereas Landsats 1, 2 and 3 contained on-board tape recorders for temporary
storage of image data when the satellites were out of view of earth stations, Landsats 4
and 5 do not, and depend on transmission either to earth stations directly or via the
geosynchronous communication satellite TDRS (Tracking and Data Relay Satellite).
TDRS is a high capacity communication satellite that is used to relay data from a

Table A.5. Orbit parameters for Landsats 4, 5, 7
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number of missions, including the Space Shuttle. Its ground receiving station is in
White Sands, New Mexico from which data is relayed via domestic communication
satellites. Landsat 7 also uses TDRS for data downlinking but has an on-board solid
state recorder for temporary storage.

A.2.2
The Landsat Instrument Complement

Three imaging instruments have been used with the Landsat satellites to date. These
are the Return Beam Vidicon (RBV), the Multispectral Scanner (MSS) and the The-
matic Mapper (TM). Table A.6 shows the actual imaging payload for each satellite
along with historical data on launch and out-of-service dates. Two different RBV’s
were used: a multispectral RBV package was incorporated on the first two satellites,
while a panchromatic instrument with a higher spatial resolution was used on Land-
sat 3. The MSS on Landsat 3 also contained a thermal band; however this operated
only for a few months.

Table A.6. Landsat payloads, launch and out of service dates

The MSS was not used after Landsat 5. With the launch of Landsat 7 an Enhanced
Thematic Mapper + (ETM+) was added.

The following sections provide an overview of the three Landsat instruments,
especially from a data characteristic point-of-view.

A.2.3
The Return Beam Vidicon (RBV)

As the name suggests the RBV’s were essentially television camera-like instruments
that took “snapshot” images of the earth’s surface along the ground track of the
satellite. Image frames of 185 km × 185 km were acquired with each shot, repeated
at 25 s intervals to give contiguous frames in the along track direction at the equivalent
ground speed of the satellite.
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Three RBV cameras were used on Landsats 1 and 2, distinguished by different
transmission filters that allowed three spectral bands of data to be recorded as shown
in Table A.7. On Landsat 3 two RBV cameras were used; however both operated
panchromatically and were focussed to record data swaths of 98 km, overlapped to
give a total swath of about 185 km. By so doing a higher spatial resolution of 40 m
was possible, by comparison to 80 m for the earlier RBV system.

Historically the spectral ranges recorded by the RBV’s on Landsats 1 and 2 were
referred to as bands 1, 2 and 3. The MSS bands (see following) in the first generation
of Landsats were numbered to follow on in this sequence.

A.2.4
The Multispectral Scanner (MSS)

The Multispectral Scanner was the principal sensor on Landsats 1, 2 and 3 and was
the same on each spacecraft with the exception of an additional band on Landsat 3.
The MSS is a mechanical scanning device that acquires data by scanning the earth’s
surface in strips normal to the satellite motion. Six lines are swept simultaneously
by an oscillating mirror and the reflected solar radiation so monitored is detected
in four wavelength bands for Landsats 1 and 2, and five bands for Landsat 3, as
shown in Table A.7. A schernatic illustration of the six line scanning pattern used
by the MSS is shown in Fig. A.1. It is seen that the sweep pattern gives rise to an
MSS swath width of 185 km thereby corresponding to the image width of the RBV.
The width of each scan line corresponds to 79 m on the earth’s surface so that the
six lines simultaneously correspond to 474 m. Approximately 390 complete six-line
scans are collected to provide an effective image that is also 185 km in the along
track direction. For Landsats 1 and 2, 24 signal detectors were required to provide
four spectral bands from each of the six scan lines. A further two were added for the
thermal band data of Landsat 3. Those detectors are illuminated by radiation reflected
from the oscillating scanning mirror in the MSS, and produce a continuously varying

Fig. A.1. The six line scanning pattern used by the Landsat multispectral scanner. Dimensions
are in equivalent measurements on the ground. This scanning pattern is the same in each of
bands 4 to 7. The same six line pattern is used on Landsats 4 and 5 except that the strip width
is 81.5 m and 82.5 m respectively
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Table A.7. Characteristics of the Landsat imaging devices

Instrument Spectral bands IFOV Dynamic range
(µm) (m) (bits)

RBVm 1. 0.475– 0.575 (blue) 79 × 79
2. 0.580– 0.680 (red) 79 × 79
3. 0.689– 0.830 (near IR) 79 × 79

RBVp 0.505– 0.750 (panchromatic) 40 × 40
MSS 4.a 0.5 – 0.6 (green) 79 × 79 7

5. 0.6 – 0.7 (red) 79 × 79 7
6. 0.7 – 0.8 (near IR) 79 × 79 7
7. 0.8 – 1.1 (near IR) 79 × 79 6
8.b 10.4 –12.6 (thermal) 237 × 237

TM 1. 0.45 – 0.52 (blue) 30 × 30 8
2. 0.52 – 0.60 (green) 30 × 30 8
3. 0.63 – 0.69 (red) 30 × 30 8
4. 0.76 – 0.90 (near IR) 30 × 30 8
5. 1.55 – 1.75 (mid IR) 30 × 30 8
7.c 2.08 – 2.35 (mid IR) 30 × 30 8
6. 10.4 –12.5 (thermal) 120 × 120 8

ETM+ 1. 0.450– 0.515 (blue) 30 × 30 8
2. 0.525– 0.605 (green) 30 × 30 8
3. 0.630– 0.690 (red) 30 × 30 8
4. 0.775– 0.900 (near IR) 30 × 30 8
5. 1.550– 1.750 (mid IR) 30 × 30 8
7. 2.090– 2.350 (mid IR) 30 × 30 8
6. 10.40 –12.50 (thermal) 60 × 60 8
pan 0.520– 0.900 13 × 15 8

a MSS bands 4 to 7 have been renumbered MSS bands 1 to 4 from Landsat 4 onwards.
IFOV = 81.5, 82.5 m for Landsats 4, 5.
b MSS band 8 was used only on Landsat 3.
c TM band 7 is out of sequence since it was added last in the design after the previous six bands
had been firmly established. It was incorporated at the request of the geological community
owing to the importance of the 2 µm region in assessing hydrothermal alteration.

electrical signal corresponding to the energy received along the 79 m wide associated
scan line. The optical aperture of the MSS and its detectors for bands 4 to 7 is such
that at any instant of time each detector sees a pixel that is 79 m in size also along the
scan line. Consequently the effective pixel size (or instantaneous field of view IFOV)
of the detectors is 79 m × 79 m. At a given instant the output from a detector is the
integrated response from all cover types present in a 79 m×79 m region of the earth’s
surface. Without any further processing the signal from the detector would appear to
be varying continuously with time. However it is sampled in time to produce discrete
measurements across a scan line. The sampling rate corresponds to pixel centres of
56 m giving a 23 m overlap of the 79 m × 79 m pixels, as depicted in Fig. A.2. The
thermal infrared band on Landsat 3, band 8, has an IFOV of 239 m × 239 m. As a
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Fig. A.2. The relationship between instantaneous field of view and pixel overlap for Landsat
MSS pixels

result there are only two band 8 scan lines corresponding to the six for bands 4 to 7,
as indicated above.

The IFOV’s of the multispectral scanners on Landsats 4 and 5 have been modified
to 81.5 m and 82.5 m respectively although the pixel centre spacing of 56 m has
been retained. In addition the bands have been renamed as bands 1, 2, 3 and 4,
corresponding to bands 4, 5, 6 and 7 from the earlier missions.

After being spatially sampled, the data from the detectors is digitised in amplitude
into 6 bit words. Before so-encoding, the data for bands 4, 5 and 6 is compressed
allowing decompression into effective 7 bit words upon reception at a ground station.

A.2.5
The Thematic Mapper (TM)
and Enhanced Thematic Mapper + (ETM+)

The Thematic Mapper is a mechanical scanning device as for the MSS, but has
improved spectral, spatial and radiometric characteristics. Seven wavelength bands
are used, with coverage as shown in Table A.7. Note that band 7 is out of place in the
progression of wavelengths, it having been added, after the initial planning phase, at
the request of the geological community. The Enhanced Thematic Mapper + carried
on Landsat 7 includes a panchromatic band and improved spatial resolution on the
thermal band.

Whereas the MSS of all Landsats scans and obtains data in one direction only,
the TM acquires data in both scan directions again with a swath width of 185 km.
Sixteen scan lines are swept simultaneously giving a 480 m strip across the satellite
path, as illustrated in Fig. A.3. This permits a lower mirror scan rate compared with
the MSS and thus gives a higher effective dwell time for a given spot on the ground,
making possible the higher spatial resolution and improved dynamic range.
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Fig. A.3. Scanning characteristics of the Landsat Thematic Mapper

A.2.6
The SPOT HRV, HRVIR, HRG, HRS and Vegetation Instruments

The early French SPOT satellites (Système pour d’Observation de la Terre), carried
two imaging devices referred to as HRV’s. These instruments utilize a different
technology for image acquisition from that employed in the Landsat MSS and TM
devices. Rather than using oscillating mirrors to provide cross-track scanning during
the forward motion of the space platform, the SPOT HRV instruments consist of a
linear array of charge coupled device (CCD) detectors. These form what is commonly
referred to as a “push broom” scanner. Each detector in the array scans a strip in the
along track direction. By having several thousand such detectors a wide swath can
be imaged without the need for mechanical scanning. Moreover, owing to the long
effective dwell time this allows for each pixel, a higher spatial resolution is possible.
A trade-off however is that charge coupled device technology was not available for
wavelengths into the middle infrared range at the time of early SPOT development.
Consequently the spectral bands provided by the HRV are not unlike those of the
Landsat MSS.

The HRV covers a ground swath width of 60 km; two instruments are mounted
side by side in the spacecraft to give a total swath width of 117 km, there being a
3km overlap of the individual swaths.

Two imaging modes are possible. One is a multispectral mode and the other
panchromatic. The imaging characteristics of these are summarised, along with the
satellite orbital properties, in Table A.8.

An interesting property of the HRV is that it incorporates a steerable mirror to
allow imaging to either side of nadir. This allows daily coverage for a short period
along with a stereoscopic viewing capability.

SPOT 4, launched in March 1998, carries two instruments – the HRVIR (High
Resolution Visible and Infrared) and the Vegetation instrument. Characteristics of
both are summarised in Table A.8.

SPOT 5 carries an instrument known as HRG (High Resolution Geometry) that
uses essentially the same wavebands as the HRVIR but with a higher spatial res-
olution. Its characteristics are also summarised in Table A.8. SPOT 5 also carries
the Vegetation instrument, along with a new device called the HRS (High Resolution
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Table A.8. Spot satellite and sensor characteristics

m multispectral mode
P panchromatic mode

Stereoscopy) that images fore and aft of the spacecraft to allow stereoscopic products
to be developed.

A.2.7
ADEOS (Advanced Earth Observing Satellite)

ADEOS-I was launched by the Japanese space agency NASDA in August 1996. It
carried a number of imaging instruments and non-imaging sensors, including OCTS
(Ocean Colour and Temperature Sensor), AVNIR (Advanced Visible and Near In-
frared Radiometer), NSCAT (NASA Spectrometer), TOMS (Total Ozone Mapping
Spectrometer), POLDER (Polarization and Directionality of the Earth’s Reflectance),
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Table A.9. ADEOS satellite and sensor characteristics

IMG (lnterferometric Monitor for Greenhouse Gases), ILAS (Improved Limb At-
mospheric Sensor) and RIS (Retroreflector in Space). Its successor, ADEOS-II,
was launched on 14 December 2002. The sensors on ADEOS-II (now also called
MIDORI-II) are the GLI (Global Imager), AMSR (Advanced Microwave Scanning
Radiometer), ILAS-II, POLDER and SeaWINDS.

Characteristics of the OCTS, GLI and AVNIR are given in Table A.9, along with
spacecraft orbital details.

A.2.8
Sea-Viewing Wide Field of View Sensor (SeaWiFS)

In August 1997 the OrbView-2 (SeaStar) satellite was launched, carrying the Sea-
WiFS sensor with characteristics as shown in Table A.10. Its wavebands have been
chosen with ocean-related applications in mind.
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Table A.10. SeaStar satellite and SeaWiFS sensor characteristics

Table A.11. MOS orbit and sensor characteristics

A.2.9
Marine Observation Satellite (MOS)

The Marine Observation Satellites MOS-l and MOS-lb were launched by Japan in
February 1987 and February 1990 respectively and were taken out of service in March
1995 and April 1996 respectively. While intended largely for oceanographic studies,
the data from the satellites’two optical imaging sensors – the MESSR (Multispectrum
Electronic Self Scanning Radiometer) and the VTIR (Visible and Thermal Infrared
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Radiometer) are of value to land based remote sensing as well. The satellites also
carried a Microwave Scanning Radiometer (MSR) intended for water vapour, snow
and ice studies. Two MESSRs were used to provide side by side observations. Each
has a 100 km swath width; with an overlap in coverage of 15 km the total available
swath is 185 km.

Orbital details of the MOS satellites and characteristics of their optical sensors
are given in Table A.11.

A.2.10
Indian Remote Sensing Satellite (IRS)

A series of remote sensing satellites has been launched by India since March 1988.
They carry imaging systems known as the LISS (Linear Imaging Self Scanner),
the WiFS (Wide Field Sensor), the advanced version AWiFS, the Ocean Colour
Monitor (OCM), the Multifrequency Scanning Microwave Radiometer (MSMR), the
Molecular Optoelectronic Scanner (MOS) and a panchromatic sensor. Orbital details
of the satellites and characteristics of the sensors are summarised in Table A.12.

A.2.11
RESURS-O1

Russia has orbited a series of remote sensing satellites since 1985 under the name
RESURS-O1. TableA.13 gives platform and sensor characteristics for the third in the
series. The principal sensor, from which commercially available imagery is produced,
is the MSU-SK, which is a conically scanning instrument.

A.2.12
The Earth Observing 1 (EO-1) Mission

EO-1 was launched on 21 November 2000 into the same orbit as Landsat 7, but one
minute behind, allowing near simultaneous, partly overlapping coverage. The Terra
platform (see Sect.A.2.13) is essentially also in the same orbit, but 30 minutes behind
EO-1. The two imaging instruments of importance on EO-1 are the Advanced Land
Imager (ALI) and Hyperion, the characteristics of which are given in Table A.14.

A.2.13
Aqua and Terra

TheAqua and Terra platforms are part of NASA’s Earth Observing System. They were
launched respectively on 4 May 2002 and 18 December 1999 in sun synchronous
orbits comparable to those for Landsat 7, but with descending equatorial crossings
of 1:30 am (or 1:30 pm ascending) for Aqua and around 10:30 am for Terra. They
are also known as the Earth Observing System (EOS) PM (Aqua) and EOS AM
platforms (Terra).
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Table A.12. IRS satellite and sensor characteristics

Orbit: Near polar, sun synchronous; nominal 10.35 am
equatorial crossing

Altitude: 904 km (1A, 1B), 817 km (1C), 736/825 km (1D)
Period: 101 min
Repeat Cycle: 22 days (1A, 1B), 24 days (1C, 1D)

Satellite imaging Instrument Launched Out-of-Service

IRS-1A LISSI Mar 1988
IRS-1B LISSII Aug1991
IRS-P2 LISSIII 16 Oct 1994
IRS-1C LISSIII, WiFS
IRS-1D LISSIII, Pan WiFS 29 Sep 1997
IRS-P3 WiFS, MOS 21 Mar 1996
IRS-P4 OCM, MSMR May 1999 (Oceansat 1)
IRS-P5 Pan Scheduled 2004 (Cartosat 1)
IRS-P6 LISSIII, LISS IV, AWiFS 17 Oct 2003 (Resourcesat 1)

Instrument Spectral bands IFOV Swath Dynamic range
(µm) (m) (km) (bits)

LISSI, II 0.45 – 0.52 73 × 73 (LISSI) 146 7
0.52 – 0.59 36 × 36 (LISSII) 146 7
0.62 – 0.68 146 7
0.77 – 0.86

⎫⎪⎪⎬
⎪⎪⎭

146 7
LISSIII 0.52 – 0.59 23 × 23 142 – 146 7

0.62 – 0.68 23 × 23 142 – 146 7
0.77 – 0.86 23 × 23 142 – 146 7
1.55 – 0.59 70 × 70 142 – 146 7

Pan 0.5 – 0.57 10 × 10 70 7
WiFS 0.62 – 0.68 188 × 188 774 7

0.77 – 0.86 188 × 188 774 7
LISSIV 0.53 – 0.59 5.8 × 5.8 23.9 (XS mode) 7

0.62 – 0.68 5.8 × 5.8 70.3 (Pan mode) 7
0.77 – 0.86 5.8 × 5.8 7

AWiFS 0.52 – 0.59 56 × 56 740 10
0.62 – 0.68 56 × 56 740 10
0.77 – 0.86 56 × 56 740 10
1.55– 1.70 56 × 56 740 10

OCM 0.4 – 0.885 360 × 360 1420 12
(8 bands @ 20 nm bandwidth)

MOS-A 0.756 – 0.768 1570 × 1400 195 16
(4 bands @ 1.4 nm bandwidth)

-B 0.408 – 1.015 520 × 520 200 16
(13 bands @ 10 mm bandwidth)

-C 1.600 520 × 640 192 16
(1 band @ 100 mm bandwidth)
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Table A.13. RESURS-O1-3 satellite and sensor characteristics

Table A.14. EO-1 sensor characteristics

Instrument Spectral Bands IFOV Swath Dynamic Range
(µm) (m) (km) (bits)

Hyperion 0.4–2.4 30 × 30 7.7 12
(220 bands @ 10 nm bandwidth)

ALI 0.433–0.453 30 × 30 37 12
0.450–0.515 30 × 30 37 12
0.525–0.606 30 × 30 37 12
0.639–0.690 30 × 30 37 12
0.775–0.805 30 × 30 37 12
0.845–0.890 30 × 30 37 12
1.200–1.300 30 × 30 37 12
1.550–1.750 30 × 30 37 12
2.080–2.350 30 × 30 37 12

0.480–0.690 10 × 10 37 12
(panchromatic)

The principal instruments on Terra are MODIS (Moderate Resolution Imaging
Spectrometer), ASTER (Advanced Spaceborne Thermal Emission and Reflection
Spectrometer), CERES (Clouds and the Earth’s Radiant Energy System), MISR
(Multi-angle Imaging SpectroRadiometer) and MOPITT (Measurement of Pollution
in the Troposphere). The instrument complement on Aqua includes MODIS, a set of
optical and microwave atmospheric sounders, CERES, and a scanning microwave
radiometer. The characteristics of MODIS and ASTER are given in Table A.15.
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Table A.15. Aqua and Terra sensor characteristics

Instrument Spectral Bands IFOV Swath Dynamic Range
(µm) (m) (km) (bits)

MODIS∗ 0.620–0.670 250 × 250 2330 12
0.841–0.876 250 × 250 2330 12
0.459–2.155 500 × 500 2330 12
(5 bands)
0.405–14.385 1000 × 1000 2330 12
(29 bands)

ASTER 0.52–0.60 15 × 15 60 8
0.63–0.69 15 × 15 60 8
0.76–0.86 15 × 15 60 8
0.76–0.86 15 × 15 60 8
(backward looking)

1.600–1.700 30 × 30 60 8
2.145–2.185 30 × 30 60 8
2.185–2.225 30 × 30 60 8
2.235–2.285 30 × 30 60 8
2.295–2.365 30 × 30 60 8
2.360–2.430 30 × 30 60 8
8.125–8.475 90 × 90 60 12
8.475–8.825 90 × 90 60 12
8.925–9.275 90 × 90 60 12

10.250–10.950 90 × 90 60 12
10.950–11.650 90 × 90 60 12

∗ The band description for MODIS is quite complex, since groups of bands are tar-
geted on specific applications. Full details can be obtained from the MODIS home page
at http://modis.gsfc.nasa.gov
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A.2.14
Ikonos

The Ikonos satellite was launched on 24 September 1999. It is in a sun-synchronous,
near polar orbit at an altitude of 681 km, with a repeat cycle of 35 days (although
a 1.5 day revisit capacity is possible with off-nadir pointing). It has a descending
equatorial crossing of 10:30 am, comparable to SPOT. Characteristics of its imaging
sensor are given in Table A.16.

Table A.16. Ikonos sensor characteristics

Spectral Bands IFOV Swath Dynamic Range
(µm) (m) (km) (bits)

Panchromatic 0.45–0.90 1 × 1 11 11
Blue 0.45–0.53 4 × 4 11 11
Green 0.52–0.61 4 × 4 11 11
Red 0.64–0.72 4 × 4 11 11
Near IR 0.77–0.88 4 × 4 11 11

A.3
Aircraft Scanners in the Visible and Infrared Regions

A.3.1
General Considerations

Multispectral line scanners, similar in principle to the Landsat MSS and TM instru-
ments, have been available for use in civil aircraft since the late 1960’s and early
1970’s. As with satellite image acquisition it is the forward motion of the aircraft that
provides along track scanning whereas a rotating mirror or a linear detector array
provides sensing in the across track direction.

There are several operational features that distinguish the data provided by aircraft
scanners from that produced by satellite-borne devices. These are of significance to
the image processing task. First, the data volume can be substantially higher. This is
a result of having (i) a large number of spectral bands or channels available and (ii) a
large number of pixels produced per mission, owing to the high spatial resolution
available. Frequently up to 1000 pixels may be recorded across the swath, with many
thousands of scan lines making up a flight line; each pixel is normally encoded to at
least 8 bits.

A second feature of importance relates to field of view (FOV) – that is the scan
angle either side of nadir over which data is recorded. This is depicted in Fig. A.4.
In the case of aircraft scanning the FOV, 2γ , is typically about 70 to 90◦. Such a
large angle is necessary to acquire an acceptable swath of data from aircraft altitudes.
By comparison the FOV for the Landsats 1 to 3 is 11.56◦ while that for Landsats 4
and 5 is slightly larger at about 15◦. The consequence of the larger FOV with aircraft



406 A Missions and Sensors

Fig. A.4. The concept of field of view (FOV) and instantaneous field of view (IFOV)

scanning is that significant distortions in image geometry can occur at the edges of
the scan. Often these have to be corrected by digital processing.

Finally, the attitude stability of an aircraft as a remote sensing platform is much
poorer than the stability of a satellite in orbit, particularly the Landsat 4 generation
for which the pointing accuracy is 0.01◦ with a stability of 10−6 degrees per second.
Because of atmospheric turbulence, variations in aircraft attitude described by pitch,
roll and yaw can lead to excessive image distortion. Sometimes the aircraft scanner
is mounted on a three axis stabilized platform to minimise these variations. It is more
common however to have the scanner fixed with respect to the aircraft body and
utilize a variable sampling window on the data stream to compensate for aircraft roll.

Use of airborne multispectral scanners offers a number of benefits. Often the user
can select the wavebands of interest in a particular application, and small bandwidths
can be used. Also, the mission can be flown to specific user requirements concerning
time of day, bearing angle and spatial resolution, the last being established by the
aircraft height above ground level. As against these however, data acquisition from
aircraft platforms is expensive by comparison with satellite recording since aircraft
missions are generally flown for a single user and do not benefit from the volume
market and synoptic view available to satellite data.

A.3.2
Airborne Imaging Spectrometers

Since the mid 1980’s the availability of new detector technologies has made possible
the development of aircraft scanners capable of recording image data in a large
number, typically hundreds, of spectral channels. For a given pixel, enough samples
of its reflectance properties may be obtained by these instruments to allow very
accurate characterisation of the pixel’s spectral reflectance curve over the visible and
reflected infrared region. Because of the large number of channels the data sets are
often referred to as hyperspectral. These devices were the forerunners of instruments
such as Hyperion, treated in Sect. A.2.12.
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A good discussion of the development of imaging spectrometry may be found in
Goetz et al. (1985) and Vane and Goetz (1988). Much of the work on those devices
led to the development of similar spaceborne instruments.

Table A.17 summarises the characteristics of a selection of current aircraft imag-
ing spectrometers.

A.4
Spaceborne Imaging Radar Systems

A.4.1
The Seasat SAR

The first earth observational space mission to carry a synthetic aperture imaging
radar was the Seasat satellite launched in June 1978. Although only short lived it
recorded about 126 million square kilometres of image data, including multiple cov-
erage of many regions. Several other remote sensing instruments were also carried,
including a radar altimeter, a scatterometer, a microwave radiometer and a visible
and infrared imaging radiometer. Relevant characteristics of the satellite and its SAR
are summarised in Table A.18. Polarization referred to in this table relates to the
orientation of the electric field vector in the transmitted and received waveforms.
Free space propagation of electromagnetic energy, such as that used for radar, takes
place as a wave with electric and magnetic field vectors normal to each other and
also normal to the direction of propagation. Should the electric field vector be paral-
lel to the earth’s surface, the wave is said to be horizontally polarized. Should it be
vertical then the wave is said to be vertically polarized. A wavefront with a combi-
nation of the two will be either elliptically or circularly polarized. Even though one
particular polarization might be adopted for transmission, some rotation can occur
when the energy is reflected from the ground. Consequently at the receiver often both
vertically and horizontally polarized components are available, each having its own
diagnostic properties concerning the earth cover type being sensed. Whether one or
the other, or both, are received depends upon the antenna used with the radar. In the
case of Seasat, horizontally polarized radiation was transmitted (H ) and horizontally
polarized returns were received (H ).

Further details on the Seasat SAR will be found in Elachi et al. (1982).

A.4.2
Spaceborne (Shuttle) Imaging Radar-A (SIR-A)

A modified version of the Seasat SAR was flown as the SIR-A sensor on the second
flight of Space Shuttle in November of 1981. Although the mission was shortened
to three days, image data of about 10 million square kilometres was recorded. In
contrast to Seasat however, in which the final image data was available digitally, the
data in SIR-A was recorded and processed optically and thus is available only in
film format. For digital processing therefore it is necessary to have areas of interest
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Table A.17. Imaging spectrometers

Instrument Spectral Spectral Dynamic IFOV Pixels per
range resolution range line
µm nm bits mrad

CASI-2 0.4 – 1 2.2 12 1.3 512
(Itres Research) (288 channels)

CASI-3 0.4 – 1.05 2.2 14 1.3 1490
(Itres Research) (288 channels)

DAIS 7915 0.4 – 1.0 15 – 30 15 3.3 512
(Georphysical (32 channels)
Environmental 1.5 – 1.8
Research Corp.) (8 channels) 45

2 - 2.5
(32 channels) 20
3 – 5
(1 channel) 2000
8 – 12.6
(6 channels) 900

AVIRIS 0.4 – 0.72 9.7 12 1 550
(Airborne Visible and (31 channels)
Infrared Imaging 0.69 – 1.30 9.6
Spectrometer – JPL) (63 channels)

1.25 – 1.87 8.8
(63 channels)
1.84 – 2.45 11.6
(63 channels)

MIVIS 0.433 - 0.833 20 12 2 765
(Daedalus (20 channels)
Enterprises Inc.) 1.15 – 1.55 50

(8 channels)
2.00 – 2.50
(64 channels)
8.20 – 12.70 ≤500
(10 channels)

HYDICE 0.4 – 2.5 7.6 – 14.9 12 0.5 320
(Hyperspectral (206 channels)
Digital Image
Collection Experiment
US Naval Research Labs)

HYMAP 0.44 – 0.88 16 12 2.5 × 2.0 512
(Integrated Spectronics 0.881 – 1.335 13
Pty Ltd) 1.4 – 1.81 12

1.95 – 2.5 16
(128 bands total)
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Table A.18. Characteristics of Seasat SAR, SIR-A, SIR-B, and SIR-C

digitized from film using a device such as a scanning microdensitometer. A summary
of SIR-A characteristics is given in Table A.18, wherein it will be seen that the
incidence angle was chosen quite different from that for the Seasat SAR. Interesting
features of landform can be brought out by processing the two together.

More details on SIR-A will be found in Elachi et al. (1982) and E1achi (1983).

A.4.3
Spaceborne (Shuttle) Imaging Radar-B (SIR-B)

SIR-B, the second instrument in the NASA shuttle imaging radar program was car-
ried on Space Shuttle mission 41 G in October 1984. Again the instrument was
essentially the same as that used on Seasat and SIR-A, however the antenna was
made mechanically steerable so that the incidence angle could be varied during the
mission. Also about half the data was recorded digitally with the remainder being op-
tically recorded. Details of the SIR-B mission are summarised in Table A.18; NASA
(1984) contains further information on the instrument and experiments planned for
the mission. Because of the variable incidence angle both the range resolution and
swath width also varied accordingly.

A.4.4
Spaceborne (Shuttle) Imaging Radar-C (SIR-C)/X-Band Synthetic
Aperture Radar (X-SAR)

SIR-C/X-SAR, the third Shuttle radar mission, was carried out over two 10 day
flights in April and September 1994. The SAR carried was the result of cooperation
between NASA and DARA, the German Aerospace Agency, and had the character-
istics indicated in Table A.18. Further details of the mission and the SAR will be
found in Stofan et al. (1995) and Jordan et al. (1995).

A.4.5
ERS-1,2

The European Remote Sensing Satellites ERS-1 and ERS-2 were launched in July
1991 and April 1995 respectively; they carry a number of sensors, one of which is a
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Table A.19. Characteristics of free flying satellite SAR systems

∗ 5.3 GHz for ERS 1, 2 and Radarsat and 1.28 Ghz for JERS-1

synthetic aperture radar intended largely for sea state and oceanographic applications.
Characteristics of the radar are summarised in Table A.19.

A.4.6
JERS-1

The Japanese Earth Resources Satellite JERS-1 was launched in February 1992. It
carries two imaging instruments; one is an optical sensor and the other an imaging
radar. Table A.19 shows the design characteristics for the radar. The optical sensor,
called OPS, has 8 wavebands between 0.52 µm and 2.40 µm with a swath width of
75 km and a dynamic range of 6 bits. The optical pixel size is 18.3 m (across track)
× 24.2 m (along track). Provision is included for stereoscopic imaging.

A.4.7
Radarsat

Canada’s Radarsat was launched on 4 November 1995; its SAR is able to oper-
ate in the standard and six non-standard modes, one of which will give a 518 km
swath (Raney et al., 1991). Table A.19 lists the characteristics of the Radarsat SAR.
Radarsat-2, scheduled for launch in 2005, will have an ultra-fine beam mode with
3 m resolution, and further polarisation options (VV, VH, HV).

A.4.8
Shuttle Radar Topography Mission (SRTM)

By deploying an outboard radar antenna 60 m from the space shuttle, along with the
main antenna in the cargo bay, two simultaneous images can be obtained of the same
region, but from different perspectives. Because of the coherent nature of the data,
the two images can be interfered to reveal topographic detail of the earth’s surface.

The Shuttle Radar Topography Mission in February 2000 used the SIR-C
(C band)/X-SAR system to acquire interferometric data from which approximately
80% of the earth’s land mass was imaged with 16 m absolute height accuracy and
20 m horizontal accuracy.



A.5 Aircraft Imaging Radar Systems 411

A.4.9
Envisat Advanced Synthetic Aperture Radar (ASAR)

The ASAR is an advanced version of the synthetic aperture radar from the ERS-1
and 2 missions. It operates at 5.331 GHz and incorporates a number of imaging modes
that provide a variety of resolutions, polarisations and swath widths. Generally, the
swath width is 100 km with the exception of wave mode (5 km) and wide swath
width and global monitoring (400 km) products.

A.4.10
The Advanced Land Observing Satellite (ALOS) PALSAR

ALOS is scheduled for launch in 2005, and is designed as a follow on to JERS-1 and
ADEOS (Midori). Besides PRISM (for stereoscopic mapping) and an AVNIR (see
Sect. A.2.7) ALOS will carry a phased array L band SAR, to be known as PALSAR.
The SAR will have a swath width of 70 km and a 2 look spatial resolution of 10 m
in its observation mode, and a swath width of 250–360 km with a spatial resolution
of 100 m in a scansar (wide swath width) mode.

A.5
Aircraft Imaging Radar Systems

Airborne imaging radar systems in SLAR and SAR technologies are also available.
As with airborne multispectral scanners these offer a number of advantages over
equivalent satellite based systems including flexibility in establishing mission pa-
rameters (bearing, incidence angle, spatial resolution etc.) and proprietary rights to
data. However the cost of data acquisition is also high.

TableA.20 summarises the characteristics of three aircraft imaging radars, chosen
to illustrate the operating parameters of these devices by comparison to satellite
based systems. Note the band: wavelength designations – X: 0.030 m, C: 0.057 m,
L: 0.235 m, P: 0.667 m. Note also that interferometric operation is also possible with
the systems listed.
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Table A.20. Representative aircraft synthetic aperture radar systems

CCRS1 SAR DLR2 ESAR JPL3 AIRSAR

Wavebands X, C bands X, C, L & P bands C, L & P bands
Polarisation HH, VV multipolarisation multipolarisation
Range resolution 6 m, 20 m 1.5 m 10 m
Azimuth resolution 6 m, 10 m 4–12 m 1 m
Interferometry yes yes yes

1 Canada Centre for Remote Sensing
2 Deutsche Forschungsanstalt für Luft- und Raumfahrt
3 Jet Propulsion Laboratory
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Appendix B
Satellite Altitudes and Periods

Civilian remote sensing satellites are generally launched into circular orbits. By
equating centripetal acceleration in a circular orbit with the acceleration of gravity
it can be shown (Duck and King, 1983) that the orbital period corresponding to an
orbital radius r is given by

T = 2π

√
r3/µ (B.1)

where µ is the earth gravitational constant, with a value of 3.986 × 1014m3s−2. The
corresponding orbital angular velocity is

θ̇ =
√

µ/r3 rad · s−1 (B.2)

The orbital radius r can be written as the sum of the earth radius re and the altitude
of a satellite above the earth, h:

r = re + h (B.3)

where re = 6.378 Mm. Thus the effective velocity of a satellite over the ground (at
its sub-nadir point) ignoring earth rotation, is given by

v = reθ̇ = re

√
µ/(re + h)3 (B.4)

The actual velocity over the earth’s surface taking into account the earth’s rotation
depends upon the orbit’s inclination (measured as an angle i anticlockwise from the
equator on an ascending pass – i.e. at the so-called ascending node) and the latitude
at which the velocity is of interest.

Let the earth rotational velocity at the equator be ve (to the east). Then at latitude φ,
the surface velocity of a point on the earth will be ve cos φ cos i. Therefore the actual
ground track velocity of a satellite at altitude h and orbital inclination i is given by

vs = re

√
µ/(re + h)3 ± ve cos φ cos i (B.5)

where the + sign applies when the component of earth rotation opposes the satellite
motion (i.e. on descending nodes for inclinations less than 90◦ or for ascending nodes
with inclinations greater than 90◦). Otherwise the negative sign is used.
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Fig. B.1. Satellite periods versus altitude above the earth’s surface, for circular orbits

Equations (B.1) to (B.5) can be used to derive some numbers of significance for
remote sensing missions, although it is to be stressed here that the equations apply
only for circular orbits and a spherical earth.

Figure B.1 shows a plot of orbital period (in minutes) as a function of satellite
altitude plotted on logarithmic coordinates. This has been derived from (B.1) and
(B.3). Some significant altitudes to note are (i) h = 907 km, at which T = 103
min; being the approximate period of the first three Landsat satellites, (ii) h =
35,800 km at which T = 24 hours, being the so-called geosynchronous orbit – if
this is established over the equator then the satellite appears stationary to a point on
the ground; this is the orbit used by many communication satellites, (iii) h = 380
Mm at which T = 28 days – this is the orbit of the moon.

Consider now a calculation of the time taken for Landsat 1 to acquire a 185 km
frame of MSS data. This can be found by determining the local velocity. For the
Landsat satellite the orbital inclination is 100◦; at Sydney Australia the latitude is
34◦S. From (B.5) this gives

vs = 6.392 km s−1.

Therefore 185 km requires 28.9 s to record.

References for Appendix B

K.I. Duck and J.C. King, 1983: Orbital Mechanics for Remote Sensing. In: R.N. Colwell (Ed.).
Manual of Remote Sensing, 2e, American Society of Photogrammetry, Falls Church.



Appendix C
Binary Representation of Decimal Numbers

In digital data handling we frequently refer to numbers in binary form; this is because
computers and their associated storage media represent data in this format. In the
binary system the numbers are arranged in columns that represent powers of 2 while
in the decimal system numbers are arranged in columns that are powers of 10. Thus
whereas we can count up to 9 in each column in the decimal system we can only count
up to one in each binary column. From the right, the columns represent 20, 21, 22

etc., so that the decimal numbers between 0 and 7 have the binary versions:

Decimal Binary
22 21 20

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1 (i.e. 2 + 1)
4 1 0 0
5 1 0 1 (i.e. 4 + 1)
6 1 1 0 (i.e. 4 + 2)
7 1 1 1 (i.e. 4 + 2 + 1)

The digits in the binary system are referred to as bits. In the above example it can be
seen that by using just 3 binary digits it is not possible to represent decimal numbers
beyond 7 – i.e. a total of 8 decimal numbers altogether, including 0. To represents 16
decimal numbers, which could be 16 levels of brightness in remote sensing image
data between 0 and 15, it is necessary to have a binary “word” with 4 bits. In that
case the word 1111 is equivalent to decimal 15. In this way it is readily shown that
the numbers of decimal values that can be represented by various numbers of binary
digits are:
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Number of bits Number of decimal levels
1 2 (i.e. 0,1)
2 4 (0, 1, 2, 3,)
3 8 (0, . . . , 7)
4 16 (0, . . . , 15)
5 32 etc.
6 64
7 128
8 256
9 512

10 1024
11 2048
12 4096

An eight bit word, which can represent 256 decimal numbers between 0 and 255,
is referred to as a byte and is a fundamental data unit used in computers.



Appendix D
Essential Results from Vector and Matrix Algebra

D.1
Definition of a Vector and a Matrix

The pixels in an image can be plotted in a rectangular co-ordinate system according
to their brightness values in each band. For example, for Landsat MSS bands 5 and 7
a vegetation pixel would appear somewhat as shown in Fig. D.1. The pixel can be
described by its co-ordinates (10, 40); this will be a set of four numbers if all 4 MSS
bands are considered, in which case the co-ordinate system also is four dimensional.
For the rest of this discussion only two dimensions will be used for illustration but the
results apply to any number. For example a 7 dimensional space would be required
for Landsat ETM+ data. The vector space will have several hundred dimensions for
imaging spectrometer data.

An alternative but equivalent means by which the pixel point can be represented
is as a vector drawn from the origin, as illustrated in Fig. D.2. In this context the
vector is simply an arrow that points to the pixel. While we never actually draw the
vector as such it is useful to remember that it is implied in much of what follows.

Mathematically a vector from the origin is described in the following way. First
we define so-called unit vectors along the co-ordinate directions. These are simply
direction indicators, which for the two dimensional case are as shown in Fig. D.3.
With these, the vector is written as
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Fig. D.1. a Spectral reflectance characteristic of vegetation; b typical vegetation pixel plotted
in a rectangular co-ordinate system

Fig. D.2. Representation of a pixel point in multi-
spectral space by a vector drawn from the origin

Fig. D.3. Definition of unit vectors

In “shorthand” form we represent the vector as

x =
[

x1
x2

]

which is properly referred to as a column vector, owing to its vertical arrangement.
Note that the unit vectors, and thus the corresponding co-ordinate directions are
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implied by the ordering in the column. Sometimes a row version is used. This is
called the transpose of x and is written as

xt = [x1 x2].
Recall that for Landsat MSS data x will have 4 column entries representing the four
response values for the pixel that x describes.

Sometimes we might wish to create another vector y from an existing vector x.
For illustration, if we take both to be just two dimensional then the components of y

can be obtained most generally according to the pair of equations

y1 = m11x1 + m12x2
y2 = m21x1 + m22x2

i.e. the components of y are just (linear) combinations of those of x. In shorthand
this transformation of the vector is expressed as[

y1
y2

]
=
[

m11 m12
m21 m22

] [
x1
x2

]
or

y = Mx

where M is referred to as a matrix of coefficients. By comparing the previous ex-
pressions, note how a multiplication of a matrix by a vector is carried out.

D.2
Properties of Matrices

The inverse of M is called M−1 and is defined by

MM−1 = I

where I is the identity matrix⎡
⎢⎢⎢⎣

1 0
0 1

. . .

1

⎤
⎥⎥⎥⎦

which, if used to transform the vector x, will leave it unchanged. This can be seen if
it is used in place of M in the equations above. The inverse of a matrix is not always
easily computed. It should be noted however that it can be expressed as

M−1 = M∗/|M|
where M∗ is called the adjoint of M and |M| is called its determinant. The adjoint, in
theory, is a transposed matrix of cofactors. This is not important in general for remote
sensing since all the calculations are usually performed with software that includes
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a procedure for inverting a matrix. However it is useful for illustration purposes to
know that the adjoint for a 2 × 2 matrix is:

M∗ =
[

m22 −m12
−m21 m11

]
when M =

[
m11 m12
m21 m22

]
Similarly large order determinant calculations are carried out by computer. It is only
necessary to note, for illustration, that∣∣∣∣m11 m12

m21 m22

∣∣∣∣ = m11m22 − m21m12 = a scalar constant.

D.3
Multiplication, Addition and Subtraction of Matrices

If M and N are two matrices, chosen as 2 × 2 for illustration and defined as

M =
[

m11 m12
m21 m22

]
N =

[
n11 n12
n21 n22

]
then

M ± N =
[

m11 ± n11 m12 ± n12
m21 ± n21 m22 ± n22

]
and

MN =
[

m11 m12
m21 m22

]
×

[
n11 n12
n21 n22

]

=
[

m11n11 + m12n21 m11n12 + m12n22
m21n11 + m22n21 m21n12 + m22n22

]
Note that the last expression is obtained by multiplying, term by term, the rows of
the first matrix by the columns of the second. Within each multiplication the terms
are summed. This pattern holds for larger matrices.

Division is not defined as a matrix operation. Rather its place is taken by the
definition of a matrix inverse, as in the above section.

D.4
The Eigenvalues and Eigenvectors of a Matrix

We have discussed the matrix M above as a matrix that transforms one vector to
another, (alternatively it can be used to transform the co-ordinate system in which
a point or vector is described). It is relevant at this stage to ask if there is a vector
that can be multiplied by a simple (but in general complex) number and thus be
transformed in exactly the same manner as it would be had it been multiplied by
the matrix M . In other words can we find a vector x in our co-ordinate space and a
(complex) number λ such that
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Mx = λx (i.e. y = λx is equivalent to y = Mx).

This implies

Mx − λx = 0

or

(M − λI)x = 0 (D.1)

The theory of simultaneous equations tells us that for this equation to be true it is
necessary to have either x = 0 or

|M − λI | = 0 (D.2)

This expression is a polynominal equation in λ. When evaluated it yields values for λ.
When these are substituted into (D.l) the vectors x corresponding to those λ will be
found. Those λ’s are called the eigenvalues of M and the associated x’s are called
the eigenvectors.

D.5
Some Important Matrix, Vector Operations

If x is a column vector, say x =
[

x1
x2

]
then

xxt =
[

x1
x2

]
[x1 x2]

=
⎡
⎣x2

1 x1x2

x1x2 x2
2

⎤
⎦

i.e. a matrix

and

xtx = [x1 x2]
[

x1
x2

]
= x2

1 + x2
2

i.e. a constant (this is often referred to as the dot product, scalar product
or inner product).

D.6
An Orthogonal Matrix – The Concept of Matrix Transpose

The inverse of an orthogonal matrix is identical to its transpose. Thus, if M is
orthogonal then
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M−1 = Mt and MtM = I,

where Mt is the transpose of the matrix, given by rotating all the elements about the
principal diagonal (that which runs through the elements m11, m22, m33, . . . ).

D.7
Diagonalisation of a Matrix

Consider a transformation matrix M such that

y = Mx.

As before the eigenvalues λi of M and their associated eigenvectors xi are defined
by the expression

λixi = Mxi , i = 1, . . . n

where n is the number of distinct eigenvalues.
These n different equations can be expressed in the compact manner

X� = MX

where � is the diagonal matrix⎡
⎢⎣

λ1 0
. . .

0 λn

⎤
⎥⎦

and X is the matrix of eigenvectors (x1, x2, . . . xn).
Consequently � = X−1 M X

If X is orthogonal then X−1 = Xt so that � = XtMX.



Appendix E
Some Fundamental Material
from Probability and Statistics

E.1
Conditional Probability

It is the purpose of this Appendix to outline some of the fundamental statistical con-
cepts commonly used in remote sensing theoretical developments. Remote sensing
terminology is used throughout and an emphasis is placed on understanding rather
than theoretical rigour.

The expression p(x) is interpreted as the probability that the event x occurs. In
the case of remote sensing, if x is a pixel vector, p(x) is the probability that a pixel
can be found at position x in multispectral space.

Often we wish to know the probability of an event occuring conditional upon
some other event or circumstance. This is written as p(x|y) which is expressed as
the probability that x occurs given that y is specified. As an illustration p(x|ωi) is
the probability of finding a pixel at position x in multispectral space, given that we
are interested in class ωi – i.e. it is the probability that a pixel from class ωi exists at
position x. These p(x|y) are referred to as conditional probabilities; the available y

generally form a complete set. In the case of remote sensing the set of ωi, i = 1, . . . M

are the complete set of spectral classes used to describe the image data for a particular
exercise. If we know the complete set of p(x|ωi) – which are often referred to as
the class conditional probabilities – then we can determine p(x) in the following
manner. Consider the product p(x|ω)p(ωi) where p(ωi) is the probability that class
ωi occurs in the image (or that a pixel selected at random will come from class ωi).
The product is the probability that a pixel at position x in multispectral space is an ωi

pixel. The probability that a pixel from any class can be found at position x clearly
is the sum of the probabilities that pixels will be found there from all the available
classes. In other words

p(x) =
M∑
i=1

p(x|ωi)p(ωi) (E.1)
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The product p(x|ωi)p(ωi) is called the joint probability of the “events” x and ωi .
It is interpreted strictly as the probability that a pixel occurs at position x and that
the class is ωi (this is different from the probability that a pixel occurs at position x

given that we are interested in class ωi . The joint probability is written

p(x, ωi) = p(x|ωi) p(ωi) (E.2a)

We can also write

p(ωi, x) = p(ωi |x) p(x) (E.2b)

where p(ωi |x) is the conditional probability that expresses the likelihood that the
class is ωi given that we are examining a pixel at position x in multispectral space.
Often this is called the posterior probability of class ωi . Again p(ωi, x) is the prob-
ability that ωi and x exist together, which is the same as p(x, ωi). As a consequence,
from (E.2a) and (E.2b)

p(ωi |x) = p(x|ωi) p(ωi)/p(x) (E.3)

which is known as Bayes’ theorem (Freund, 1992).

E.2
The Normal Probability Distribution

E.2.1
The Univariate Case

The class conditional probabilities p(x|ωi) in remote sensing are frequently assumed
to belong to a normal probability distribution. In the case of a one dimensional spectral
space this is described by

p(x|ωi) = (2π)−1/2 σ−1
i exp

{
−1

2
(x − mi)

2/σ 2
i

}
(E.4)

in which x is the single spectral variable, mi is the mean value of x and σi is its
standard deviation; the square of the standard deviation, σ 2

i , is called the variance of
the distribution. The mean is referred to also as the expected value of x since, on the
average, it is the value of x that will be observed on many trials. It is computed as the
mean value of a large number of samples of x. The variance of the normal distribution
is found as the expected value of the difference squared of x from its mean. A simple
average of this squared difference gives a biased estimate. An unbiased estimate is
obtained from (Freund, 1992)

σ 2
i = 1

qi − 1

qi∑
j=1

(xj − mi)
2 (E.5)

where qi is the number of pixels in class ωi and xj is the j th sample.
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E.2.2
The Multivariate Case

The one dimensional case just outlined is seldom encountered in remote sensing,
but it serves as a basis for inducing the nature of the multivariate normal probability
distribution, without the need for theoretical development. Several texts treat the
bivariate case – i.e. that where x is two dimensional – and these could be consulted
should a simple multivariate case be of interest without vector and matrix notation
(Nilsson, 1965 and 1990; Swain and Davis, 1978; Freund, 1992).

Consider (E.4) and see how it can be modified to accommodate a multidimen-
sional x. First, and logically, x must be replaced by x. Likewise the univariate mean
mi must be replaced by its multivariate counterpart mi . The variance σ 2

i in (E.4) must
be modified, not only to take account of multidimensionality but also to include the
effect of correlation between spectral bands. This role is filled by the covariance
matrix Σi defined by

Σi = E {(x − mi )(x − mi )
t
}

(E-6a)

where E is the expectation operator and the superscript “t” is the vector transpose
operation. An unbiased estimate for Σi is given by

Σi = 1

qi − 1

qi∑
j=1

{
(xj − mi )(xj − mi )

t
}

(E.6b)

Inside the exponent in (E.4) the variance σ 2
i appears in the denominator. In its mul-

tivariate extension the covariance matrix is inverted and inserted into the numerator
of the exponent. Moreover the squared difference between x and mi is expressed
using the vector transpose expression (x − mi )

t (x − mi ). Together these allow the
exponent to be recast as − 1

2 (x −mi )
tΣ−1

i (x −mi ). We now turn our attention to the
pre-exponential term. First we need to obtain a multivariate form for the reciprocal
of the standard deviation. This is achieved first by using the determinant of the co-
variance matrix as a measure of its size (see Appendix D) – giving a single number
measure of variance – and then taking its square root. Finally the term (2π)−1/2

needs to be replaced by (2π)−N/2, leading to the complete form of the multivariate
normal distribution for N spectral dimensions

p(x|ωi) = (2π)−N/2|Σi |−1/2 exp

{
−1

2
(x − mi )

tΣ−1
i (x − mi )

}
(E.7)

References for Appendix E

Along with vector and matrix analysis and calculus, a sound understanding of probability
and statistics is important in developing a high degree of skill in quantitative remote sensing.
This is necessary not only to appreciate algorithm development but also because of the role
of statistical sampling techniques and the like when dealing with sampled data. The depth
of treatment in this appendix and in the body of the book has been sufficient for a first level
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Appendix F
Penalty Function Derivation
of the Maximum Likelihood Decision Rule

F.1
Loss Functions and Conditional Average Loss

The derivation of maximum likelihood classification in Sect. 8.2 is generally accept-
able for remote sensing applications and is used widely. However it is based implicity
on the understanding that misclassifying any particular pixel is no more significant
than misclassifying any other pixel in an image. The more general approach pre-
sented in the following allows the user to specify the importance of making certain
labelling errors compared with others. For example, for crop classification involv-
ing two sub-classes of wheat it would probably be less of a problem if a particular
wheat pixel was erroneously classified into the other sub-class than it would if it
were classified as water.

To develop the general method we introduce the penalty function, or loss function

λ(i|k) i, k = 1, . . . M (F.1)

This is a measure of the loss or penalty incurred when an algorithm erroneously
labels a pixel as belonging to class ωi when in reality the pixel is from class ωk . It
is reasonable to expect that λ(i|i) = 0 for all i: this implies there is no penalty for a
correct classification. In principle, there are M2 distinct values of λ(i|k) where M is
the number of classes.

The penalty incurred by erroneously labelling a pixel at position x in multispectral
space into class ωi is

λ(i|k)p(ωk|x)

where the pixel comes correctly from class ωk and p(ωk|x) is the posterior probability
that ωk is the correct class for pixels at x. Averaging this over all possible ωk we have
the average loss, correctly referred to as the conditional average loss, associated with
labelling a pixel as belonging to class ωi . This is given by

Lx(ωi) =
M∑

k=1

λ(i|k)p(ωk|x) (F.2)
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and is a measure of the accumulated penalty incurred given the pixel could have
belonged to any of the available classes and that we have available the penalty func-
tions relating all the classes to class ωi . Clearly, a useful decision rule for assigning
a label to a pixel is to choose that class for which the conditional average loss is the
smallest, viz

x ∈ ωi if Lx(ωi) < Lx(ωj ) for all j 	= i. (F.3)

An algorithm that implements (F.3) is often referred to as a Bayes’optimal algorithm.
Even if the λ(i|k) were known, the p(ωk|x) usually are not. Therefore, as in

Sect. 8.2.2 we adopt Bayes’ theorem which allows the posterior probabilities to be
expressed in terms of the class probability distribution functions p(x|ωk); viz

p(ωk|x) = p(x|ωk)p(ωk)/p(x)

where p(ωk) is the class prior probability. Using this in (F.2) gives

Lx(ωi) = 1

p(x)
lx(ωi)

with

lx(ωi) =
M∑

k=1

λ(i|k) p(x|ωk) p(ωk). (F.4)

Since p(x) is common to all classes it is sufficient to decide class membership on
the basis of the lx(ωi).

F.2
A Particular Loss Function

Suppose λ(i|k) = 1 − Φik with Φii = 1 and Φik(k 	= i) to be defined. Then (F.4)
can be expressed

lx(ωi)=
M∑

k=1

p(x|ωk) p(ωk) −
M∑

k=1

Φikp(x|ωk) p(ωk)

=p(x) − gi(x)

with

gi(x) =
M∑

k=1

Φikp(x|ωk) p(ωk) (F.5)

Again since p(x) is common to all classes it does not aid discrimination and
thus can be removed from the conditional average loss expression, leaving just
lx(ωi) = −gi(x). Because of the minus sign in this expression we can then decide
the “least cost” labelling of a pattern at position x in multispectral space according
to maximisation of the discriminant junction gi(x), viz
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x ∈ ωi if gi(x) > gj (x) for all j 	= i. (F.6)

It is of interest at this stage to put

Φik = δik, the Kroneker delta function,

defined by

δik = 1 for i = k

= 0 for i 	= k.

Equation (F.5) then becomes

gi(x) = p(x|ωi) p(ωi)

so that the decision rule in (F.6) is

x ∈ ωi if p(x|ωi) p(ωi) > p(x|ωj ) p(ωj ) for all j 	= i

which is the classification rule adopted in (8.3) in Chap. 8. Frequently this is referred
to as the unconditional maximum likelihood decision rule.

References for Appendix F

Nilsson (1965) gives an excellent account of the derivation of the maximum likelihood decision
rule based upon penalty functions in the manner just derived. Duda, Hart and Stork (2001)
also cover the topic in detail.

R.O. Duda, P.E. Hart and R.G. Stork, 2001: Pattern Classification, N.Y., Wiley.
N.J. Nilsson, 1965: Learning Machines, N.Y., McGraw-Hill.
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Justifier 350

k nearest neighbour classifier – see
Classification

Kappa coefficient 304
Karhunen-Loeve transformation – see

Principal components transformation
Kauth-Thomas – see Tasseled cap

Transformation
Kernels 230
Knowledge-based image analysis 342
Kronecker delta function 219, 429

Labelling – see Classification
Landsat 391
Leave one out method – see Accuracy
Layered classification – see Classification
Likelihood ratio 269
Line detection 125
Line striping 32, 36
Linear contrast enhancement – see Contrast

enhancement
Linear detector array (CCD) 10
Linear discrimination 202, 220, 226
Linear Imaging Self Scanner (LISS) 401
– LISS I 402
– LISS II 402
– LISS III 402
– LISS IV 402
Linear system 110
Linear system theory 110
Log residuals – see Radiometric correction
Logarithmic contrast enhancement – see

Contrast enhancement
Look up tables 72, 83
Loss function – see Penalty function
Lowtran 7 – see Radiometric correction

Mahalanobis – see Classification
Mahalanobis distance 207
Map accuracy – see Accuracy, Classification

accuracy
Maple – see Software systems
Mapping polynomials 42
Marine Observation Satellite (MOS) 399,

400
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Markov random fields 216
Mathematica – see Software systems
Mathematical modelling of geometric errors

54
MATLAB – see Software systems
Matrix 419
– addition of 420
– adjoint 419
– block diagonal 375
– cofactor 419
– determinant of 419
– diagonal 381, 422
– diagonalization of 422
– eigenvalues of 142, 420
– eigenvectors of 142, 420
– identity 419
– inverse 419
– multiplication of 420
– orthogonal 421
– pseudo inverse 386
– subtraction of 420
– symmetric 140
– trace of 143
– transpose of 419, 421
Maximum likelihood classification – see

Classification
Mean value smoothing – see Filtering
Mean vector 80, 138, 196
Median filtering – see Filtering
Midori 399
Mie (aerosol) scattering 30
Migrating means clustering – see Clustering
Minimum distance classification – see

Classification
MIVIS 408
Mixed data types – see Spatial data sources
Mixed pixels 302, 385
Modal filtering – see Filtering
Moderate Resolution Imaging Spectrometer

(MODIS) 401, 404
Mosaicing 97, 99
MSU-SK 401, 402
Multicycle contrast enhancement – see

Contrast enhancement
Multilayer perceptron 232
MultiSpec – see Software systems
Multispectral line scanner 10
Multispectral Scanner (MSS) 393, 394

Multispectral space 75
Multispectrum Electronic Self Scanning

Radiometer (MESSR) 400
Multistage classification – see Classification

NASA Spectrometer (NSCAT) 398
Neighbourhood function 212
Neighbourhood operations 109, 190
Neural networks 80, 232, 296
Nimbus satellites 389
NOAA satellites 389
Noise fraction 155
Non-parametric classification – see

Classification
Non-parametric discriminant analysis – see

Feature selection
Non-parametric weighted feature extrac-

tion – see Feature selection
Normal probability distribution
– multivariate 80,196, 425
– univariate 424
Nugget variance 132
Nyquist rate 174

Ocean Colour and Temperature Sensor
(OCTS) 398, 399

Ocean Colour Monitor (OCM) 401
Opinion Pools
– linear 336
– logarithmic 337
OPS 410
Optical thickness 33
OrbView-2 satellite 399
Orthogonal sum 340

PALSAR 411
Pan (on IRS) 402
Panoramic distortion 37, 39, 55
Parallelepiped classification – see

Classification
Passive remote sensing 3
Path radiance 30, 44
Pattern hyperplane 222
Penalty function 427
Periodic functions 168
Photointerpretation 2, 67
Piecewise linear contrast modification – see

Contrast enhancement
Pitch 43
Pixel replicative zoom 61
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Pixel spectra 10, 68
Pixel vector 77, 417
Platform altitude variations 37, 43
Platform attitude variations 37, 43
Platform ephemeris 43
Platform velocity variations 37, 43
Plausibility 339
Point operations 83
Point spread function 111, 209
Polar orbit 390
Polarization (electromagnetic) 9, 407
Polarization and Directionality of the Earth’s

Reflectance (POLDER) 398
Posterior probability 195, 424, 427
Prewitt operator 122
Principal components transformation 137
– for change detection 314
– for data reduction 154, 277, 381
– noise adjusted 154
– segmented 379
Prior probability 195, 428
Probabilistic label relaxation 211
Processing element 232
Progressive two-class decision classifier –

see Classification
Pseudocolouring 104
Push broom scanner 10
Pyramid images 19, 24

Qualitative reasoning 342
Quantitative analysis 67, 72, 193

Radarsat 410
Radiance 29
Radiometric correction 32, 366
– 5S Code 366
– ATREM 366
– empirical line 368
– flat field 368
– haze removal 35
– log residuals 367
– Lowtran 7 366
– Modtran 3 366
Radiometric distortion 27
Radiometric enhancement – see Contrast

enhancement
Radiometric modification – see Contrast

enhancement
Radiometric resolution – see Resolution

Range resolution 14, 409, 410
Raster format 17
Rayleigh scattering 30
Rectification – see Geometric correction
Reflectance 29, 360, 366
– apparent 366
– real 366
– scaled 366
Registration 27, 56
– image to image 57
– to map grid 51
Regularised covariance estimates 381
Repeat cycle 392
Resampling 48
– effect on classification 298
Resolution
– radiometric 3
– spatial 3
RESURS-01 401, 403
Retroreflector in Space (RIS) 399
Return Beam Vidicon (RBV) 393
Roberts operator 121
Roll 43
Rule-based image processing 133

Sampling theorem 174
Sampling theory 173
Satellite
– altitude 413
– orbit 414
Saturating linear contrast enhancement – see

Contrast enhancement
S-bend distortion 41
Scalar image 83
Scale (image) 21
Scale changing 61
Scan time skew distortion 43
Scanning Multichannel Microwave Radio

meter (SMMR) 389
Scattering
– aerosol 30
– corner reflector 7
– diffuse 7
– Mie 30
– Rayleigh 30
– specular 7
– surface 7
– volume 7
Scattering coefficient 6
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Scattering matrix
– between class 287
– within class 288
Seasat 407
SeaStar 399, 400
Sea-Viewing Wide Field of View Sensor

(SeaWiFS) 399, 400
Semivariogram 131
Sensor non-linearities 37, 45
Separability 267
– maximum likelihood classification 267,

268
– minimum distance classification 276
Sequential similarity detection algorithm

(SSDA) 57
Shape detection and recognition 132
Shape factor 132
Sharpening 123
Shuttle Imaging Radar (Spaceborne Imaging

Radar)
– SIR-A 407
– SIR-B 409
– SIR-C/X-SAR 409
Shuttle Radar Topography Mission (SRTM)

410
Side looking airborne radar (SLAR) 12
Signature 194, 295
Sill 132
Similarity metrics 249
Single pass clustering algorithm – see

Clustering
Sky irridiance 30, 360
Slant range 14
Slant range resolution 14
Smoothing – see Filtering
Sobel operator 122
Software systems
– ENVI 203
– ER Mapper 203
– Maple 145
– MATLAB 145, 242
– Mathematica 145
– MultiSpec 203, 210, 259, 275
Solar spectrum 7, 360, 366, 379
Spatial context 209
Spatial data sources 15
Spatial derivative 121
Spatial frequency 185

Spatial resolution – see Resolution
Speckle 9
Spectral Angle Mapping (SAM) 368
Spectral class 75, 249, 302
Spectral irradiance 29
Spectral library 369, 371
Spectral reflectance characteristics
– soil 5
– vegetation 5
– water 5
Spectral slope 373
Spectral unmixing 385
Specular reflection 7
SPOT satellite 397
Stacked vector 385
Standard deviation multiplier 258
Stereoscopic viewing 397
Stratified random sampling 305
Strip generation parameter 259
Sum of squared errors measure (SSE) 250
Sun synchronous 9
Supervised classification – see Classification
Supervised relaxation labelling 337
Support 339
Support vector 229
Support vector classifier 226
Support vector machine 80, 226, 296
Symmetric matrix – see Matrix
Synthetic aperture radar (SAR) 12
System function 111

Table look up classification – see
Classification

Tasseled cap transformation 156
Taylor method of contrast enhancement –

see Contrast enhancement
Templates 109
– edge detection 120
– line detecting 125
– non-linear 125
– semi-linear 125
– smoothing 115
Terra 401, 404
Texture 128
Thematic Mapper (TM) 393, 396
Theory of Evidence 338
Thermal infrared 6
Threshold logic unit 224
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Thresholds
– in image smoothing 115
– in maximum likelihood classification 197
– in minimum distance classification 204
TIROS 389
TIROS Operational Satellite (TOS) 389
Total Ozone Mapping Spectrometer (TOMS)

398
Trace – see Matrix
Tracking and Data Relay Satellite (TDRS)

392
Training data 80, 193, 296
Training fields 193, 295
Training pixels, number required 199, 364,

375
Transfer characteristics of radiation detectors

32
Transformed divergence 274
Transformed vegetation index 292
Transmittance (atmospheric) 30
Transpose
– of a matrix – see Matrix
– of a vector 419

Uniform histogram 90
Unit step waveform – see Heaviside step

function
Unsupervised classification – see Classifica-

tion

Vector

– pixe1 77, 138, 417
– transpose 419
– unit 417
Vector format 17
Vector gradient 121
Vector image 83
Vector quantisation 383
Vector to raster conversion 17
Vegetation index 160, 292
Vegetation instrument 397, 398
Visible and Infrared Spin Scan Radiometer

(VISSR) 391
Visible and Thermal Infrared Radiometer

(VTIR) 400

Wavelet transform 190
Weather satellites 389
Weight point 222
Weight space 222
Weight vector 220
Wide Field Sensor (WiFS) 401
Window functions 190
Within categories variance 280
Within class covariance matrix 280

Yaw 43

Zooming 61
– interpolative 61
– pixe1 rep1icative 61


